
AFRL-AFOSR-CL-TR-2016-0011

Towards natural transition in compressible boundary layers

Marcello Faraco de Medeiros
FUNDACAO PARA O  INCREMENTO DA PESQUISA E APEFEICOAMENTO IN

Final Report
06/29/2016

DISTRIBUTION A: Distribution approved for public release.

AF Office Of Scientific Research (AFOSR)/ IOS
Arlington, Virginia 22203

Air Force Research Laboratory

Air Force Materiel Command

DISTRIBUTION A. Approved for public release: distribution unlimited.



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE

4. TITLE AND SUBTITLE 5a.  CONTRACT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

13. SUPPLEMENTARY NOTES

12. DISTRIBUTION/AVAILABILITY STATEMENT

14. ABSTRACT

15. SUBJECT TERMS

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON 

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Adobe Professional 7.0

PLEASE DO NOT RETURN YOUR  FORM TO THE ABOVE ORGANIZATION.  

3. DATES COVERED (From - To)

5b.  GRANT NUMBER

5c.  PROGRAM ELEMENT NUMBER

5d.  PROJECT NUMBER

5e.  TASK NUMBER

5f.  WORK UNIT NUMBER

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

16. SECURITY CLASSIFICATION OF:

19b. TELEPHONE NUMBER (Include area code)

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing the burden, to the Department of Defense, Executive Service Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no
person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

27-06-2016 Final 30-29-2011 to 29-03-2016

Towards natural transition in compressible boundary layers

FA9550-11-1-0354

Marcello  A. Faraco de Medeiros

Germán Andrés Gaviria Martínez

University of São Paulo
Rua da Reitoria
1009,Butantã,São Paulo ± SP
CEP 05508-900 - Brazil

Air Force Office of Scientific Research 
875 N Randalph St., Ste 325
Arlington, VA 22203

 James M. Fillerup

 AFOSR/NA and AFOSR/SOARD

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited

See report

Wave packet, compressible boundary layer, subsonic flow, nonlinear instability, secondary instability, transition to turbulence,
direct numerical simulation, white noise

Marcello  A. Faraco de Medeiros

 +55 (0)16 3373 8377109

DISTRIBUTION A. Approved for public release: distribution unlimited.



Final report

Towards natural transition in compressible boundary layers

Principal Investigator: Marcello Augusto Faraco de Medeiros

Email: marcello@sc.usp.br

Investigator: Germán Andrés Gaviria Mart́ınez

Email: 4ndres.gaviria@gmail.com

Universidade de São Paulo, Brazil

Grant number: FA9550-11-1-0354

2016

DISTRIBUTION A. Approved for public release: distribution unlimited.



Abstract

This final report concerns the results obtained in the project titled: “Towards natural transition in com-
pressible boundary layers”, with Grant number FA9550-11-1-0354-P00002, in the period 30-09-2011 to
29-03-2016, with Dr. James M. Fillerup serving as program manager.
In this project, a DNS code was developed to investigate problems on transition in subsonic compressible
boundary layer on a flat plate. Code validation tests were performed for linear and nonlinear stages of
transition, on incompressible and compressible regimes. The focus of the present work is to investigate
natural transition in subsonic boundary layers modeled by wave packets; and perform a preliminary study
of transition induced by white noise.
Three main problems were considered, namely, a DNS simulation and analysis of the experiment [59] of
wave packet evolution on incompressible boundary layer, the influence of compressibility on wave packet
evolution at subsonic Mach numbers and finally, a preliminary study of the evolution of a white noise
perturbation in the boundary layer at Mach 0.2 and Mach 0.9.
Comparisons between numerical and experimental results show remarkably good agreement in the linear
and nonlinear stages, in both, spatial and Fourier spaces. A numerical simulation of this experiment and
the analysis carried out is not available in the literature for wave packets in the incompressible boundary
layer. The nonlinear modal analysis performed established the existence of tuned fundamental and sub-
harmonic resonance of H-type and K-type in the packet.
Influence of compressibility in the wave packet evolution was here investigated in boundary layers at Mach
0.7 and Mach 0.9. There are no works reported in the literature on wave packets in compressible subsonic
boundary layer. In the linear regime, the oblique modes were the most unstable for Mach > 0.7, as ex-
pected by the results of the literature. In the nonlinear regime, strong streaks were observed, associated
with low frequency modes that eventually decay downstream. An isolated wave packet at Mach 0.9 showed
nonlinear amplification only in the subharmonic band, which may be associated to H-type or detuned
resonance. However this packet has a relatively stable character. On the other hand, at Mach 0.9 spanwise
interaction of wave packet pairs were more unstable than the isolated case, because stable modes for the
isolated packet evolution becomes unstable in the wave packet interaction. This scenario evidenced the
presence of oblique transition.

Finally, the nonlinear evolution of the same white noise disturbance at Mach 0.2 and Mach 0.9 were
observed to be completely different. In the incompressible boundary layer localized lambda vortex struc-
tures were observed, that could be associated to the local presence of H-type and/or K-type resonance. In
the compressible regime, longitudinal vortex structures distributed across the entire domain seemed to be
linked to oblique transition. In the white noise evolution, compressibility seems to have a stronger effect
than in the wave packet evolution. In the conditions considered, the wave packet interaction appear to be
a better representation of white noise compressible transition scenario.

Publications related: 1. An accepted paper [53] 2. Accepted paper in 46th AIAA Fluid Dynamics Confer-
ence, AIAA Aviation and Aeronautics Forum and Exposition 2016. 3. Papers with the complete results
obtained for incompressible and compressible boundary layer, are in preparation for submission.
I certified that there were no subject inventions during the performance of this work to declare. The U.S.
Government is authorized to reproduce and distribute reprints for government purpose notwithstanding
any copyright notation thereon. The view and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or endorsements, either expressed
or implied, of the Air Force Office of Scientific Research or the U.S. Government.
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Chapter 1

Introduction

Natural transition is the term coined in literature [38, 20] to refer to the transition to turbulence process as
it occurs in real (uncontrolled) conditions, generated by perturbations with random spectral content and
moderate amplitudes, < 2% of the free-stream velocity as was observed experimentally by [66] and [69].
Transition to turbulence in boundary layers is triggered by infinitesimal perturbations that begin to be
amplified by the flow from the critical Reynolds number Recr up to the transition point RT , which indi-
cates the turbulence onset. In the transition region, the flow acts as a band-pass filter, amplifying through
linear and nonlinear mechanisms the unstable bands of modes. Temporal and three-dimensional complex
variations on the flow are observed, as was firstly evidenced in the pioneer experiment [70]. In real condi-
tions, disturbances in the form of thermal, mechanical and acoustic perturbations, surface irregularities,
free stream turbulence, among others, cannot be completely removed, and always are present influencing
the flow. The transition process is very sensitive to flow characteristics and disturbance parameters, such
as amplitude, spectrum and source of perturbation, [85]. It is a very intermittent phenomenon, difficult to
measure and reproduce.
Given the complexity of the problem, investigations on natural transition consider several simplified ap-
proaches. For example, two-dimensional waves interacting with a low amplitude band of three-dimensional
modes [88, 27, 10], transition induced by free-stream turbulence [12, 72], white noise [101, 84] and wave
packets, which are the focus of this work.
The use of wave packets as a model for natural transition is justified by their broadband spectra and by
experimental observations, where wave packets have been identified in the time-velocity signals induced
by free stream turbulence [80, 34] and by artificially excited white noise [84]. Through Fourier analysis,
individual modes in the wave packet can be monitored to identify linear and nonlinear interactions, and
the results can be related with observations in natural transition.

1.1 Relevance

In many practical situations prediction or control of the transition point is crucial, as well as the deter-
mination of flow properties in the transition regime. In some cases, it is needed to promote turbulence
as in chemical mixing, combustion or to avoid separation. Delay of turbulence onset is important for the
extension of laminar flow, because it is related with lower drag and higher lift coefficients. Investigations
on a Airbus A320, [51], evidence that skin friction drag is responsible for about 50% of the total drag, from
this percentage 25% is generated on the wings. Depending on the specific part of the airplane, it is possible
to achieve different levels of drag reduction. An extreme case is the drag of the fin, that can be reduced in
38% resulting in a saving of 1.3% in fuel consumption. In subsonic aircraft, fuel represents around 27% of
DOC (Direct Operational Cost), in supersonic aircraft, it represents 35%.
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The laminar region can be extended using flow control systems or by wing shape optimizations. High
cost and technical requirements of the control systems, suggest that drag reduction based on laminar
wings would give more benefits. However, design of laminar wings is a challenge, because limitations in
understanding the transition process difficult refined optimizations. Low error drag estimations depend on
practical and accurate methods, which reduce time in design cycles.
The dimensionless drag count coefficient is a measure of drag. At cruise, the drag count varies between
200 to 400. For subsonic cruise 1 drag count is equivalent to 100kg. For supersonic cruise 1 drag count is
equivalent to 5% of the payload. The accuracy desired for drag calculation is 10 drag counts for subsonic,
4 for transonic cruise and 1 for supersonic cruise, [89]. Methods used in aircraft industry can have errors
on estimations on drag on the order of 10%, transonic cruise presents even higher deviations [89, 41].
The formulation of accurate and practical methods is based on a detailed comprehension of the transition
process that remains as an open problem.
Usually engineering predictions of transition are performed by means of empirical correlations or semi-
empirical methods [22], as for example eN method [94], which is one of the most employed . These solutions
produce acceptable results on engineering applications but do not explain the transition phenomenon.
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1.2 Transition routes

Depending mostly on the perturbation amplitude and spectral composition, there are two main routes
of transition to turbulence, bypass transition and modal amplification [28]. The whole process is shown
in the figure 1.1. Bypass transition is induced by high perturbation amplitudes, In this case, the flow
changes abruptly from laminar to turbulent, this route is not considered in this work. In modal route, the
flow evolves through several stages, as sketched in the figure 1.2, changing flow properties and developing
complex vortical structures gradually. The present work focuses in the linear and moderate nonlinear stages
of transition, that corresponds to the region indicated by the red line in the figure.

Figure 1.1: Paths to turbulence in boundary layers. (Reproduced from [28]).

Figure 1.2: Stages of the transition process in the boundary layer. 1) Laminar flow 2) Primary instability 3)
Secondary instability 4) Highly nonlinear region with presence of turbulent spots 5) Fully turbulent flow.
The region of interest in the present work is indicated by the red line.

The simplest case of hydrodynamic instability in a boundary layer consists of a monochromatic perturbation
with infinitesimal amplitude, relative to the free-stream velocity. Also known as primary instability, this
stage is responsible for the generation of the so called TS waves and it is described by the LST. Usually,
subsonic incompressible regime occupies the larger part of the transition region, generating two-dimensional
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waves. This theory is derived from the linearization of the Navier Stokes equations, and arrives at the Orr-
Sommerfeld equation [19, 78]. This equation is formulated in terms of the undisturbed or base flow ubase,
and the disturbance u′, which results from subtraction of the base flow from the perturbed flow:

u′ = ū− ubase (1.1)

The ansatz for the solution of the Orr-Sommerfeld equation is a harmonic wave described by:

u′ = exp(i(αx+ βz − ωt)) (1.2)

In the spatial analysis, the frequency ω and spanwise wave number β = 2π
λz

are real and considered as
parameters, then, α = αx + iαi results from the flow response and is an eigenvalue for this problem.
Theoretical results of linear instability for boundary layer can be summarized in the instability diagram
(figure 1.3). The flow amplifies the unstable band of frequencies, defined by the inner region of the diagram.
This corresponds to the Tollmien-Schlichting waves. The points where disturbances start to grow and to
decay are know as first and second branch respectively. Their amplitudes increase in downstream up to
the end of the unstable region, as sketched in figure 1.3. TS waves were predicted theoretically at the
beginning of 1930 decade [91, 75] and confirmed experimentally in the classic experiment of [80] in the first
low turbulence wind tunnel. Previous attempts to detect TS waves failed due to relative high turbulence
intensity in the wind tunnels. Results only were published after the Second World War. Tollmien-Schlichting
waves have a two-dimensional wave front, they are characterized by the growth rate αi, streamwise wave
number αx, propagation angle ψ. These waves propagates with phase velocity cp. When ψ 6= 0, the Tollmien-
Schlichting waves also are known as oblique waves with spanwise number β. From the flow variables, this
parameters can be calculated as:

ψ = atan
β

αx
, αx =

dθ(x)

dx
, αi = −d[ln(A(x))]

dx
, cp =

ω

αx
(1.3)

With A(x) the amplitude of the disturbance, θ(x) the phase, which is calculated by performing Fourier
transform over the time signals in the streamwise velocity component. For an oblique wave with spanwise
wave number β, the phase velocity is given by [40]:

cp =
ωαx

α2
x + β2

(1.4)

A mode can be identified by the parameters (ω, β) or in terms of the harmonics (n, k) of a given funda-
mental mode (ω0, β0).

6
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Figure 1.3: Tollmien-Schlichting wave in the diagram instability. Reynolds number is based on boundary
layer displacement δ∗(x) and non-dimensional frequency.

At disturbance amplitudes, around 0.02%to0.1% of the free stream velocity, moderate nonlinear effects
arise, with strong amplification in a short spatial region. Growth rates increase substantially with respect
to the linear growth rates. Three-dimensional vortical structures are generated, with a defined spatial and
temporal periodicity. Also skin drag coefficient increases and distortion on the velocity profiles is observed
[74].
Under controlled conditions, three nonlinear mechanisms of wave growth have been discovered, namely,
fundamental or K-type [43, 37], subharmonic or H-type [39, 40], both identified in experimental observa-
tions and oblique resonance (O-type) discovered numerically, initially for compressible boundary layer at
Mach 1.6 by [9] and for incompressible boundary layer by [79]. Another kind of nonlinear amplification is
proposed by [100, 99], which establishes that nonlinear resonance occurs when waves have the same phase
velocity. These kinds of nonlinear amplification are known as secondary instability. These mechanisms
separately can lead to a complete breakdown to turbulence [74, 86]. An isolated two-dimensional TS-wave
can not promote transition, at least low amplitude oblique waves are needed. It is not clear entirely if these
mechanisms are present in natural transition, how they coexist or interact or if there are unknown non-
linear mechanisms. These mechanisms are relevant because in more complex cases, such as wave packets,
several of their characteristics have been qualitatively observed. For disturbance amplitude larger than %5
of the free-stream velocity, strong nonlinear effects are dominant, turbulent spots are generated and fully
turbulent regime is achieved.

Subharmonic breakdown is triggered by a threshold amplitude of the fundamental mode (1, 0), which res-
onates with the mode (1/2,±1). In this mechanism, three-dimensional vortical structures with a staggered
pattern are generated. In the region of subharmonic amplification the velocity amplitude varies in the range
0.02% to 0.06%, influencing the spatial vortex periodicity [3].
Fundamental resonance can be initiated by the interaction of a 2D mode (primary wave) (1, 0) and a pair
of oblique waves (1,±1) with low amplitude or by the interaction of the primary wave and the pair of
steady modes (0,±1), (see [7]). The primary mode has a catalytic role, because the energy transferred to
the oblique waves comes from the base flow, not from the 2D mode, which keeps its energy almost without
variation. In this mechanism aligned vortical structures are generated, it develops in a short region and
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generates peaks in velocity signal. In the process, harmonics in frequency and spanwise modes are generated
and amplified. It is more explosive than subharmonic resonance and develops in a shorter region. During
the resonance process, both modes reach the same phase velocity. This is known as phase locking. In the
subharmonic resonance, threshold amplitude and phase locking have analog behavior as for fundamental
resonance.
Oblique transition is generated by the nonlinear interaction of a pair of oblique waves (1,±1). In this mech-
anism, there is no threshold amplitude. Modes grow linearly and transfer energy to a steady mode (0,±2),
while also harmonics (0, 2k) are generated . Linear and nonlinear behavior are difficult to separate. [77]
concluded that oblique transition can be triggered by a lower energy in the oblique waves than the energy
required by the 2D waves in H-type and K-type resonances. For high amplitudes of the oblique waves, the
oblique transition can induce turbulence, for lower amplitudes all modes eventually decay. Several works,
[56, 55] shows that oblique breakdown is a viable path to turbulence in supersonic boundary layers.

Compressibility can change stability properties of a given flow. Research of transition in compressible
boundary layer come after of its incompressible counterpart, owing mainly to experimental difficulties and
problem complexity by the increase of variables and parameters. There are only a few experiments of
controlled transition on supersonic boundary layers: the experiment of [81] for Mach 2 is commonly used
as main reference for low supersonic Mach numbers. Investigations on nonlinear transition in compressible
boundary layers start at the ends of the 1980s, with studies on secondary instability. This coincides with a
noticeable improvement in the calculation capacity and the cost reduction of the computational resources.
Since then, the amount of numerical investigations is increasing. Also in these years, efficient numerical
approaches like the PSE [8] were formulated, which are capable of reproducing moderate nonlinear behavior
of the Navier-Stokes equations. These methods were applied to compressible boundary layers to investigate
the initial stages of the nonlinear regime of transition [14]. In subsequent years, several systematic studies
were performed on secondary instability at subsonic [23, 54], and supersonic boundary layers [62]. Also,
[90] simulated secondary instability for compressible boundary layer at several Mach numbers. In recent
theoretical works, spatial modes [92] and the effect of heat transfer on Klebanoff modes [71] are investi-
gated. More recently, a new mode was discovered for compressible boundary layers [93].
Compressibility alters stability properties of a given flow. According to LST [49, 31, 50, 65], at subsonic
Mach numbers the unstable region is similar to the incompressible case. The main differences result in a
reduction of the growth rates and the critical Reynolds numbers, [65]. Also, in contrast to incompressible
boundary layers, for Mach ≥ 0.7 the 3D disturbances with angle of propagation 45◦ < ψ < 60◦ are more
unstable than 2D waves [98], the effect is strongest in the range 2 < Mach< 3.
At subsonic Mach numbers compressibility has an overall stabilizing effect and, as a direct consequence,
the transition region is longer in the nonlinear regime [53]. However, the set of most unstable modes can
change, depending on the specific value of the Mach number, due to several effects, some of them, described
below.
Results on secondary instability mechanisms [23], showed that for subsonic Mach numbers, the subhar-
monic resonance has less intensity than the incompressible counterpart, then, it is needed a longer region
to develops a nonlinearity of this kind. Fundamental resonance is stronger than subharmonic, and more
intense with the propagation angle [90].
In subharmonic resonance there is a preferred band in spanwise wave numbers [62]. In subsonic boundary
layers heat transfer has a stronger effect on linear instability than in supersonic ones [76, pag. 467]. By
adding heat into the boundary layer, unstable region increases, while heat removal has a stabilizing effect
[42]. Methods for transition prediction used in industry are mainly based on linear amplification and only
limited nonlinear effects are included, for example, by coupling Navier-Stokes solvers with the eN method
[103], or using nonlinear models of natural transition, [45]. Sometimes additional effects, such as the com-
pressibility [41] are also taken into account.

8
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Natural transition develops through different routes depending, mainly, on the specific characteristics of
spectral content and amplitude of the perturbation. These routes may include secondary instability mecha-
nisms, that could coexist interchanging dominance along transition stages depending on specific conditions.
Probably unknown scenarios are also present, generating intermittency and formation of turbulent spots.
Investigation of the aspects are the focus of actual research.

1.3 Wave packets and natural transition

Early works on wave packets were experimental, establishing the main characteristics of the packet evo-
lution. [95] reveals selective nonlinear amplification in the streamwise direction. The following experiment
focused on linear evolution [33] to compare results with a linear model [32]. Later, [17] performed measure-
ments of the complete transition process, from linear amplification up to the formation of turbulent spots.
In [16] analysis for individual modes is carried out, to identify nonlinear amplification. Subsequent experi-
ments focused in several aspects of moderate nonlinear regime. [59] investigated the origin of nonlinearly
generated modes, the phase effect of the perturbation [58] and the effect of magnitude of the modulation
[57]. By performing variations on the spectral content of the wave packet disturbance, [4] observed that the
pressure gradient has a large influence on the evolution than the packet shape. In these works, bands of
nonlinearly amplified modes suggest the presence of secondary instability mechanisms, both fundamental
and subharmonic. Usually, in the experiments and simulations of wave packets, the frequency spectrum of
the perturbation is carefully controlled, and less attention is given to the spanwise spectrum.
In the literature, the dominant nonlinear activity in wave packet has been attributed to subharmonic in-
stability of the C or H type. Nevertheless, the conclusion is generally based only on the fact that these
waves fall close to the subharmonic band, and that the dominant spanwise wave number is close to that
obtained for subharmonic resonance for controlled (unmodulated wave) transition [17, 59, 86]. It is clear in
the literature that the dominant subharmonic mode in the packet does not have exactly half the frequency
of the dominant primary fundamental mode in the packet. The frequency ratio is closer to 2/3 and is often
regarded as evidence of detuned subharmonic resonance [11]. However such resonance would normally be
associated with two modes symmetric with respect to the actual subharmonic frequency. This state of
affairs led to suggestions that a different mechanism could be at play [102], namely phase locking mecha-
nism [100]. It is apparent that the issue is not yet settled. It seems that comparison of actual growth rates
would be a much more definite evidence for conclusion, but this was never shown in the literature, except
in the experiments of [20], which performed such an analysis for waves modulated only in the streamwise
direction. [20] produced the streamwise modulation by combining 2 or 3 waves of different frequency and
the subharmonic waves were also artificially excited. With this strategy, the problem of identification of
detuned resonance in the modulated wave system was circumvented because the degree of detuning was
established by the excitation, not by the evolution. Although being an important step into modulated
waves, the analysis carried out in [20] is still limited relative to the wave packet composed by a continuous
spectrum.

1.3.1 DNS simulations of wave packets

A DNS have a high demand for computational resources, hence, they are used mainly as a research tool.
A more general comprehensive review of DNS used on research in transition and turbulence can be found
in [61].
Probably [24] performed the first DNS simulation for transitional boundary layers, focused on exploring
the quality of numerical solutions by comparison with results of linear theory and related experimental
observations. [26] quantified the effect of assumptions considered for the derivation of LST, as the non
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parallel assumption. Due to computational limitations, [25] performed first simulations of two-dimensional
wave packets. Early three-dimensional DNS simulations of transition in compressible boundary layers,
performed along the decade of 1990s, were focused on exploring the potential of the numerical approach,
also into developing accurate numerical methods for this kind of problem and improving computational
performance, using, for example, parallelization [35].
In the literature, there are three main reference experiments of wave packets on incompressible boundary
layer: [33], [17] and [59]. The first two experiments were reproduced using DNS simulations, by [44, 83]
and [102] respectively, leading to numerical investigation. A numerical analysis of the experiment [59] is
not found in literature.
Some observations at Mach 0.5, considering white noise [63], nonlinear growth [97], transition on an airfoil
[48] and secondary instability mechanisms [21] suggest that up to Mach 0.5 there are no remarkable
differences in the initial nonlinear stages of transition in compressible boundary layer. A remarkable fact
of the DNS simulations is the prediction of the oblique transition mechanism, not observed previously in
experiments. In the last fifteen years DNS simulations concentrated on initial nonlinear stages and fully
developed turbulence [21]. Recently, investigations have been focused on the determination of the details
in the transition process at several Mach numbers, considering changes in the three dimensional structures
and the effect of a selected parameter, such as wall temperature and geometry.
Initial works of wave packets on compressible boundary layers are for hypersonic flows [29], and DNS
simulations at Mach 1.3 [67], Mach 2 [56], Mach 3 [55] and several for higher Mach numbers [30, 87] were
performed later.
Despite a great number of engineering applications falls into high subsonic and transonic regime, the
investigations on wave packet evolution concentrate on either incompressible and supersonic boundary
layers. Research of wave packet evolution in subsonic boundary layer is still incipient.

1.4 Objectives of this work

The present work has two principals objectives: to develop a DNS code focused in problems of transition in
subsonic boundary layers on a flat plate and to investigate natural transition in subsonic regime, modeled
by wave packets and white noise. Three main problems were considered: numerical simulation of the exper-
iment [59] in incompressible boundary layer, the influence of compressibility on wave packet evolution at
subsonic Mach numbers and finally, a preliminary study of transition induced by white noise in a boundary
layer at Mach 0.2 and 0.9.
The numerical results are analyzed in the context of current nonlinear theories for monochromatic waves,
to establish the nonlinear regime that the packet undergo.
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1.5 Thesis outline

The document is organized as follows. Chapter 2 describes the governing equations and boundary condi-
tions tested and eventually used. The numerical procedure is also described, including the time and space
discretization, filter, grid stretching and parallelization, among other aspects. In Chapter 3, the validation
tests performed on the code are presented. This includes tests in the linear and nonlinear regime. Results of
subharmonic, fundamental and oblique resonances on incompressible and compressible subsonic boundary
layers available in the literature were used for comparison.
In Chapter 4 results for DNS simulation of the experiment [59] are presented. Detailed comparison on
physical and Fourier spaces is shown, a nonlinear modal analysis is performed and several relevant cal-
culations are presented. Chapter 5 is devoted to results for wave packets at Mach 0.7 and 0.9, including
interaction between packets at Mach 0.9. Chapter 6 presents results and preliminary analysis for transition
generated by white noise at Mach 0.2 and 0.9. Finally, Chapter 7 is dedicated to conclusions, final remarks
and suggested future works.
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Chapter 2

Physical problem and computational
setup

2.1 Governing equations

Navier Stokes equations for compressible flow at subsonic Mach numbers were solved numerically in a
rectangular integration domain as indicated by dashed lines in the figure 1.2, to calculate the boundary
layer over a flat plate. It was considered the non-conservative formulation, in terms of density ρ, velocity
components ui and internal energy e. All variables are non-dimensionalized by the displacement thickness
δ∗0 at a reference position in streamwise direction, free-stream value of velocity U∗∞ and density ρ∗∞. The
equations can be written as

∂ρ

∂t
= −ρ∂ui

∂xi
− ∂ρ

∂xi
ui (2.1)

∂uj
∂t

= −∂uj
∂xi

ui −
1

ρ

∂p

∂xj
+

1

ρ

∂τij
∂xi

(2.2)

∂e

∂t
= − ∂e

∂xi
ui −

p

ρ

∂ui
∂xi

+
1

ρ
τij
∂uj
∂xi
− 1

ρ

∂qi
∂xi

(2.3)

The viscous tensor is defined as

τij =
µ(T )

Re

[
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂uk
∂xk

]
(2.4)

and the heat flux term is given as

qi = − µ

(γ − 1)RePrM2
∞

∂T

∂xi
. (2.5)

The Reynolds, Prandtl and Mach numbers are defined as:

Re =
ρ∗∞U

∗
∞δ
∗
0

µ∗∞
Pr =

µ∗∞cp
∗

k∗
M∞ =

U∗∞
c∗∞

=
U∗∞√
γp∗∞/ρ

∗
∞

(2.6)

with µ∗∞, c∗p the references dynamic viscosity and specific heat, and γ the heat capacity ratio.
Temperature and internal energy are related by:

e =
T

(γ2 − γ)M2
∞

(2.7)
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To complete the set of equations required to solve the Navier-Stokes equations system, the ideal gas
hypothesis is considered, to relate the pressure p with the internal energy and density

p = (γ − 1)ρe (2.8)

Finally viscosity is modeled considering the Sutherland’s law

µ∗

µ∞
= µ(T ) =

1 + C

T + C
T

3
2 (2.9)

with C = 110k
T ∗∞

, and T ∗∞ = 300K. The relations between dimensional variables denoted with (*) and
nondimensional ones are:

ρ =
ρ∗

ρ∗∞
, p =

p∗

p∗∞U
∗2
∞
, xi =

x∗i
δ∗0
,

T =
T ∗

T ∗∞
, ui =

u∗i
U∗∞

, t =
t∗U∗∞
δ∗0

, e =
e∗

U∗2∞
.

2.2 Numerical Methods

A DNS code was developed focusing on problems of transition in boundary layer at subsonic Mach numbers.
The code is implemented in Fortran90 and parallelized using MPI (Message Passage Interface). Routines
of LAPACK library are used to solve linear equation systems for spatial derivatives calculation
In transition to turbulence problems variations of the flow in a wide range of scales, usually of 10−6% -
10−2% of the free stream velocity must be calculated. Then, spectral-like schemes are interesting.

2.2.1 Discretization

For spatial discretization a compact finite differences scheme was constructed with spectral like resolu-
tion, based on [47]. The scheme is 4th order accuracy and is composed by a tridiagonal stencil to reduce
computational cost as compared with pentadiagonal implementations. These schemes allow highly accu-
rate discretizations with a lower number of grid points than required in non-compact methods. The time
integration is performed with a standard 4th order Runge Kutta method:

yn+1 = yn +
1

6
(k1 + k2 + k3 + k4) (2.10)

with:

k1 = ∆tf(tn, yn) (2.11)

k2 = ∆tf(tn +
1

2
∆, yn +

1

2
k1) (2.12)

k3 = ∆tf(tn +
1

2
∆, yn +

1

2
k2) (2.13)

k4 = ∆tf(tn∆, yn + k3) (2.14)

Uniform grid is used in streamwise and spanwise directions, grid is stretched in wall normal direction to
increase resolution near the wall and resolve gradients correctly. Details can be found in [6, 5].
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2.2.2 Compact finite differences

In an uniform grid the first derivative can be approximated as

βf ′i−2 + αf ′i−1 + f ′i + αf ′i+1 + βf ′i+2 = c
fi+3 − fi−3

6h
+ b

fi+2 − fi−2

4h
+ a

fi+1 − fi−1

2h
. (2.15)

The coefficients a, b, c, α, e β are chosen to set the order of stencil with respect to the truncated Taylor
series.

Second order: a+ b+ c = 1 + 2α+ 2β, (2.16)

Fourth order: a+ 22b+ 32c = 2
3!

2!
(α22β), (2.17)

Sixth order: a+ 24b+ 34c = 2
5!

4!
(α24β), (2.18)

Eigth order: a+ 26b+ 36c = 2
7!

6!
(α+ 26β), (2.19)

Tenth order: a+ 28b+ 38c = 2
9!

8!
(α+ 28β). (2.20)

Relations (2.16) to (2.20) can be used to construct up to 10th order accurate stencils. By means of error
analysis, it is possible to calculate the modified wave number w′ as a function of the real wave number w
for each finite difference scheme as

w′(w) =
a sin(w) + (b/2) sin(2w) + (c/3) sin(3w)

1 + 2α cos(w) + 2β cos(2w)
. (2.21)

In [47], 4th order pentadiagonal schemes with spectral-like resolution are constructed, using relations (2.16)
and (2.17) and imposing the condition:

w′(w1) = w1, w′(w2) = w2, w′(w3) = w3. (2.22)

To reduce the computational cost associated with a pentadiagonal system, on the right hand side of the
equation 2.15 two approximations were considered to construct tridiagonal schemes, with stencil of 5 and
7 points (β = 0), both 4th order accurate. Using the relations (2.16) and (2.17), the 5 point stencil was
obtained by imposing

c = 0, w′(w1) = w1 (2.23)

the 7 point stencil results from
w′(w1) = w1, w′(w2) = w2 (2.24)

Several schemes were tested by solving the advection equation to compare the modified wave number and
phase speed cp = w′/w, as shown in figures 2.1 and 2.2.
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Figure 2.1: Modified wave number for several schemes. (a) 5 points stencil for w1 = 1.5; w1 = 1.8; w1 = 2.2
and w1 = 2.4. (b) 7 points stencil to w1 = 2.3, w2 = 2.4; w1 = 2.4, w2 = 2.5; w1 = 2.5, w2 = 2.6.
Comparison with tridiagonal sixth order scheme. (Reproduced from [6]).

Figure 2.2: Phase velocity for several schemes. (a) 5 points stencil for w1 = 1.5; w1 = 1.8; w1 = 2.2 and
w1 = 2.4. (b) 7 points stencil to w1 = 2.3, w2 = 2.4; w1 = 2.4, w2 = 2.5; w1 = 2.5, w2 = 2.6. Comparison
with tridiagonal sixth order scheme. (Reproduced from [6]).

From the modified wave number curves and phase velocity for 5-point stencil, ω′ = 1.8 was chosen because
it offers the best approximation. By substitution into restrictions (2.16, 2.17, 2.21), the resulting stencil is:

α = 0.364957272268410 β = 0 , a = 1.57663818151227 b = 0.153276363024547 c = 0 (2.25)

This stencil was employed in all simulations performed in the present work.
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2.2.3 Numerical Stability

For the advection equation this integration scheme is stable up to CFL (Courant-Friedrichs-Lewy) number
around 1.3 [47][pag. 32]. For the Navier-Stokes equations the time step was modified, also this value of
CFL was achieved to obtain a numerically stable solution. The convection and diffusion stability criterion
are given by:

∆t ≤ CFL[
1

M∞
+umax

∆x +
1

M∞
+vmax

∆y +
1

M∞
+wmax

∆z

] (2.26)

2.2.4 Filter

Spurious oscillations are generated by numerical boundary conditions, grid stretching, among other factors.
This nonphysical oscillations may be amplified affecting the numerical solution. To control spurious oscil-
lations a 10th order low pass filter [96] was applied in each time iteration at the inner points of the domain.
In the spanwise direction, a periodic filter is used to be compatible with the periodic boundary condition.
The filtering level is controlled with the numerical parameter α, which varies from −0.5 ≤ αf ≤ 0.5, low
values of αf correspond to higher filtering. In all simulations presented here αf = 0.49 was employed in all
directions, which means almost no filter. For an arbitrary discrete variable φ the filter is defined by:

αf φ̄i−1 + φ̄iαf + φ̄i+1 =
N∑
n=0

an
2
φi+n + φi−n (2.27)

The coefficients for the 10th order filter are:

a0 =
193 + 126αf

256
a1 =

105 + 302αf
256

a2 = 15
−1 + 2αf

64
(2.28)

a3 =
45− 2αf

512
a4 = 5

−1 + 2αf
256

a5 =
1− 2αf

512
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2.2.5 Grid stretching

The domain was discretized with an uniform grid in x and z directions, in the wall normal direction a
stretched grid was employed. The number of grid points considered in each direction were nx, nz and ny
respectively. For the simulations performed in this work, two grids in y-direction were considered, one
defined by 0 ≤ y ≤ 20, ny = 51 and a more refined grid with an wider wall normal domain defined by,
0 ≤ y ≤= 60, ny = 151, both, are shown in figure 2.3.
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Figure 2.3: (a) Grid stretching in the wall normal direction, (b) stretching function and (c) cell size variation.

2.2.6 Boundary Conditions

Initially characteristic boundary conditions were considered to be used in the boundary layer simulations.
As a code test, reflecting and non-reflecting outflow boundary conditions proposed by [68] were applied to
the Poiseuille flow. This approach calculates the numerical boundary conditions based on considerations
and approximations of Navier-Stokes equations, to control wave reflections. Results shown in figures 2.4
and 2.5 reveal a good qualitative agreement, including details in the contour levels of the flow variables.
This kind of boundary conditions was not used in the boundary layer, because in their formulation they
have parameters strongly dependent of the problem that must be determined empirically. Also, a buffer
zone is required [97], which does not justify the complexity and the increase in the computational time.
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Figure 2.4: Reflecting outflow boundary conditions applied to the Poiseuille flow in a two-dimensional
domain. (a) Reference case (Reproduced from [68]) and (b) DNS simulation are in a very good agreement.
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Figure 2.5: Non-reflecting outflow boundary conditions applied to the Poiseuille flow in a two-dimensional
domain. (a) Reference case (Reproduced from [68]) and (b) DNS simulation are in a very good agreement.

In the transitional boudary layer simulations, the base flow is a boundary layer over a flat plate, which
is obtained with a two-dimensional DNS simulation of the long semi-infinite plate. At the inflow, uniform
flow condition is imposed by fixing velocity, with u = 1 and zero for the others velocity components
whereas the pressure is calculated with Neumann condition. At the outflow the pressure is fixed, and
the other flow variables are calculated using null second derivative. Also a buffer zone is included at the
outflow to avoid reflections into the integration domain. On the wall, a no-slip condition is applied to the
velocity components meanwhile isothermal wall is used for the temperature, density is calculated with a
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compatibility condition for the pressure. Finally at the upper boundary, Neumann condition is applied
to the velocity components and density, the pressure is fixed. In three dimensional simulations, periodic
boundary condition is used in the spanwise direction.
To obtain the steady state base flow, the simulation is run until variations of the integrated variables are
of order 10−12 between consecutive time steps. To better represent free flow condition at the leading edge
of the plate, a domain extension upstream of the plate is included with free-slip condition at the wall, as
sketched in figure 2.6. With this set up, some undesired and nonphysical pressure gradient which results
in small velocity profiles deformations are avoided.
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Figure 2.6: Steady state boundary layer profile generation. (a) Upstream of the leading edge of the flat
plate a free-slip wall is included to avoid nonphysical gradients associated with the plate leading edge. (b)
Boundary layer profile. (Figure is stretched in y direction to facilitate visualization) 0.6δ∗ (-), 1.1δ∗ (-.-)
and δ99 (...) .

2.2.7 3D Moving Frame

To reduce the computational domain and hence the number of grid points, a three dimensional moving
frame was implemented. During the simulation the domain was increased downstream and in the spanwise
direction, and reduced upstream, to perform calculation only in the region occupied by the wave packet. The
domain was resized sometimes along the simulation. Figure 2.7 shows three different computational domains
superposed to evidence the differences. Several tests performed by comparison of results obtained for several
frames sizes show that there are no significant differences in the packet region or at the boundaries, in
physical and Fourier spaces.
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Figure 2.7: Moving frame 3D.

2.3 Parallelization

The code was parallelized employing domain decomposition technique by using the library [1]. This imple-
mentation allows to divide the computational domain into N × 1 or N ×M blocks, sometimes named as
slab and pencil decomposition respectively, as sketched in figure 2.8. In this kind of decomposition each
processor stores a sub-domain, that contains all axis points in one direction, so that all derivatives in this
direction can be calculated in parallel with a compact finite difference scheme.
To calculate the derivatives in the other directions, the orientation of the decomposition is changed. The
orientation change is performed by transposition operations which involves communication between pro-
cess, using the mpi alltoall routine, which is the principal source of overhead in this kind of parallelization.
Depending on the employed computer architecture, there is an optimal decomposition, that minimizes
the communication time. The parallelization used in this work does not introduce any additional error at
the sub-domain boundaries, as occurs for other parallelization approaches in combination with compact
schemes [82], however the overhead in communication operations increase with the number of processors.
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(a)

(b)

Figure 2.8: (a) Slab (b) pencil decomposition. (Reproduced from [1].)

2.3.1 Performance estimation

There are two kinds of tools to determine program performance: profiling and tracing. Profiling tools
allows to collect global data from statistical sampling of events during execution of the program, gprof is
an open-source tool of this kind. Tracing tools, as for example Vampir-trace, collect detailed data during
execution. This kind of tools are more precise, but larger data files than in profiling tools are generated and
can produce substantial computing overhead. To determine the computational performance of the current
DNS code, gprof was used for the sequential execution and Vampire-Trace for parallel execution.

Sequential execution

Using gprof, the code structure can be decomposed into blocks, as shown in figures 2.9 and 2.10. Each
box corresponds to a function of the code. Inside the boxes there are 3 numbers indicating the percentage
of total computational time employed by a particular function. The second number, between parentheses,
indicates the amount of work done by the function and the third number is the number of calls of the
function. Numbers outside the boxes are the percentage of work passed to the next function and number of
calls. From this diagram it can be concluded that 50% of the computational time is employed into spatial
derivative calculation and the most expensive function is dgtsv of [46] library, which was used to solve the
tridiagonal system of the finite difference method. Time per/iteration per/grid point is of the order of 5µs.
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Figure 2.9: Execution diagram and computational cost obtained with gprof.

Figure 2.10: Information of the computational cost obtained with gprof.
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Parallel execution

By using vampir, detailed diagrams of the communication operations between processors can be obtained
(figure 2.12). They allow to find errors and bottlenecks to plan optimizations. However, this kind of analysis
requires detailed work and only preliminary tests were performed. To evaluate performance of a parallelized
program there are several metrics, for the DNS code, the most relevant metric is the speedup. The speedup
is a measure of efficiency on the time reduction by increasing number of processors. Ideally, if n proces-
sors are used, the computational time is reduced by a factor of 1

n . However, due to the communication
operations between processors required for the parallelization, an overhead in the computational time is
generated, which increases with the processors number. Figure 2.11 shows the results for tests using up
130 processors, carried out for the DNS code, showing a reasonable performance. However, scalability has
a strong dependence on the computer architecture and physical communication channels between proces-
sors. To perform the simulations of the present work, less than 40 processors were used, for which the
performance is better.
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Figure 2.11: Speedup of the DNS code.
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Figure 2.12: Diagrams of profiling obtained with vampir, showing detailed information of the communica-
tion operations required for parallelization.
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Chapter 3

Code validation

The developed DNS code has been successfully applied to study several hydrodynamic instability problems
in cavity flow [5] and boundary layer [53, 52]. In this chapter, code validation tests are presented at several
regimes of transition for subsonic boundary layers. Initially, comparisons of boundary layer profiles with
theoretical results are shown. Then, the subsequent sections are devoted to comparisons between DNS
simulations and results of the literature for primary and secondary instabilities.

3.1 Base flow generation

The base flow considered is a subsonic boundary layer over a flat plate. It is calculated with a two-
dimensional DNS simulation starting from an uniform flow until a stationary regime is reached with
variations on the integrated variables of the order of 10−12.

3.1.1 Boundary layer profiles

To compare the boundary layer profiles generated with DNS simulations, the Stewartson equations, for
compressible boundary layer (see [2]), were solved.. The differential equation system to be solved in terms
of the similarity variables F and T is:

d

dη

(
χ

Pr

dT

dη

)
+ F

dT

dη
+ (γ − 1)M2χ

(
d2F

dη2

)2

= 0 (3.1)

d

dη

(
χ
d2F

dη2

)
+ F

d2F

dη2
= 0 (3.2)

with χ = ρ′µ′. The boundary conditions are:

T |η=0 = Tw,
dF

dη
|η=0 = 0, , F |η=0 = 0 (3.3)

and

T |η→∞ → 1,
dF

dη
|η→∞ → 1 (3.4)

Flow variables are recovered using the transformation:

η =

√
Re

2x

∫ y

0
ρ(x, ỹ)dỹ (3.5)
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u =
dF

dη
, v = T (ηu− F )

√
1

2xRe
(3.6)

and

T = T (η), ρ = 1/T, e =
1

γM2(γ − 1)
+

1

2
(u2 + v2)ρ (3.7)

To include the Sutherland’s law, χ is given by:

χ =
1 + C

T + C

√
T

dχ

dT
= χ

{
1

2T
− 1

T + C

}
(3.8)

Then, the system of equations 3.1 and 3.2 becomes:

d3F

dη3
= − 1

χ

d2F

dη2

{
dχ

dT

dT

dη
+ F

}
(3.9)

d2T

dη2
= − 1

χ

{
dχ

dT

{
dT

dη

}2

+ PrF
dT

dη
+ Pr(γ − 1)M2χ

d2F

dη2

}
= 0 (3.10)

The Blasius solution [98] is the theoretical result for incompressible boundary layer. In figure 3.1 the

velocity profiles are compared in terms of the similarity variable η = y
√

Re
2x . Comparison of asymptotic

values for v are in a very good agreement.
Also the figure shows the asymptotic value of the wall-normal velocity component, v, calculated with the
three solutions.
The shape factor H = δ∗/θ , calculated with the Blasius and Stewartson solutions, and DNS simulation
are respectively: HBlasius = 2.591566, HStw = 2.597096, HDNS = 2.594004. Flow parameters used in DNS
simulations were Mach 0.2 and Re=835, Pr = 0.71. All the comparisons performed are in a very good
agreement with the theoretical results.
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Figure 3.1: Comparison of Blasius profiles for velocity components, u, v, with Stewartson solution and DNS
results. Comparison of asymptotic values for v are in a very good agreement.
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Figure 3.2 shows the thermal boundary layer for adiabatic wall condition, calculated with Stewartson
solution and computed with DNS. The value of the adiabatic wall temperature Tad, [98, pag. 511], is also
compared by using the theoretical relation

Tad = T∞

(
1 + r

γ − 1

2
M2

)
(3.11)

The recovery coefficient r, for the laminar boundary layers is r ≈
√
Pr.
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Figure 3.2: Temperature profile for adiabatic wall and comparison of Tad values calculated from DNS,
Stewartson solution and theoretical value (equation 3.11) at Mach 0.9.

All DNS results are in very good agreement with the theoretical results.

3.2 Hydrodynamic instability tests

[44] presented results of a DNS simulation for a TS-wave, in a attempt to investigate the effect of not
considered factors in LST, such as non-parallelism. Figure 3.3 shows a comparison of the amplification
curves, for a TS-wave with F = 120. The perturbation is introduced into the flow by using a localized
periodic blowing and suction disturbance, applied at the wall normal component of velocity as :

vwall = A1,0 cos[αx(x− x0)] cos(ωt) (3.12)
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Figure 3.3: Tollmien-Schlichting amplification curves for incompressible boundary layer. (a) Reproduced
from [44, pag. 331] and (b) DNS simulation.

From DNS simulation, the amplification curve employing the inner maximum criterion was calculated,
(figure 3.3(b)). Comparison of the curve and the location of the first and second branch with the reference
result (figure 3.3(a)) are in a good agreement.
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The results for fundamental resonance on incompressible boundary layer are limited in the literature. For
comparison with the current DNS code, [73] was used as reference. The perturbation function is defined as

vwall = A1,0 cos[α(x− x0)] cos(ωt) +A1,1[cos(α(x− x0)± βz)] cos(ωt) (3.13)

Amplification curves obtained from DNS simulation are compared in figure 3.4(a) with the reference case.
For the fundamental (1,0), oblique (1,1) and harmonic (1,2) mode, the curves are in very good agreement.
The vortical structures generated (figure 3.4(b)) are aligned as expected. In the spectrum shown in figure
3.4(c), the generation and amplification of harmonics, in frequency (n) and spanwise wave numbers (k) can
be seen.
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Figure 3.4: DNS simulation of Fundamental resonance. (a) Comparison of amplification curves with [73],
(b) Vortical structures generated by the K-type resonance are aligned. (c) Spectrum at Re/1.7208 = 460
at y = 0.6δ∗(x).

For the subharmonic resonance, [40] was here considered as reference case. The disturbance used to induce
H-type resonance was:

vwall = A1,0 cos(αx(x− x0)) cos(ωt) +A1/2,1[cos(α(x− x0)± βz) cos((ω/2)t) (3.14)

Figure 3.5(a) compares the amplification curves for fundamental and subharmonic modes showing good
agreement. The resulting vortex array (figure 3.5(b)) is organized in a staggered pattern, as expected for
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this mechanism. Finally in the spectrum (figure 3.5(c)), the generation and amplification of harmonics in
frequency and spanwise wave number can be observed.
To test the code for nonlinear regime in compressible boundary layer, a subharmonic case at Mach 0.8 [54]
was simulated. Comparison of the amplification curves (figure 3.6(a)) also shows good agreement.

Finally, the case reported by [36], for oblique resonance was simulated, using as perturbation a pair of
oblique waves:

vwall = A1,1[cos(α(x− x0)± βz)] cos(ωt) (3.15)

The comparison of amplification curves for several modes, shown in figure 3.7(a) evidences good agreement
between DNS simulations with the reference results. Longitudinal vortical streaks are generated (figure
3.7(b) ) and in the spectra, amplification of the modes (0, 2) and (2, 2), typical of this kind of nonlinear
activity, is observed.
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Figure 3.5: Comparison of Subharmonic resonance from [40] and DNS simulation. (a) Amplification curves,
(b) staggered vortex pattern and (c) spectral content.
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Figure 3.7: Comparison of amplification curves (a) for oblique transition reported in [36] and calculated
with DNS. (b) Streaks in xz plane (c) spectrum (kβ0, nω0) at Re = 1300 .
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Chapter 4

DNS simulation of experimental wave
packet on incompressible boundary layer

4.1 Numerical set-up

4.1.1 Choice of reference experiment

In the literature, there are three main reference experiments of wave packets on incompressible boundary
layer. In these experiments, the disturbance is introduced in the flow by a defined acoustic time signal
driving a loudspeaker that was located at the center of the plate and communicated to the fluid via a
small hole. [33] focused on the linear evolution for comparison with the theoretical linear model proposed
by [32], which is valid for low amplitudes of the packet. In that experiment, the wave packet amplitude
is of the order of 0.05% of the free-stream velocity, measured close to the outer amplitude peak of the
Tollmien-Schlichting wave, at y = 1.1δ∗(x). The disturbance is a rectangular pulse in time, with amplitude
and pulse width as parameters. Initial subharmonic amplification is also observed in the last measurement
points.
In [17], the evolution from the linear wave packet to the formation of turbulent spots is investigated. In the
evolution the packet amplitudes varies from 0.4% to 27% of the free stream velocity measured close to the
inner amplitude peak of the Tollmien-Schlichting wave at y = 0.6δ∗(x). The disturbance was produced by a
single period of a sinusoidal wave of frequency 24Hz, chosen to coincide with the most linearly unstable 2D
mode in the experimental arrangement. Later in [16], an analysis for individual modes is carried out for the
same experimental data which identifies nonlinear growth of oblique modes. In the analysis, these modes
are separated in three bands of frequencies, considering as reference, the frequency of the 2D dominant
linear mode. The first band is centered around half of the reference frequency (the subharmonic band),
the second band contains modes around the reference frequency (the fundamental band) and the third
band represents higher frequency modes. Results show strong nonlinear amplification in the three bands,
however no attempt was made to find an explanation for the origin of the nonlinear fundamental modes.
From DNS simulation of this experiment, [102] argues that owing to small deviations from comparisons
with LST observed in some low frequency modes, the experiment does not display a fully linear region.
This is probably associated with the relatively high disturbance amplitude used in the experiment.
In [59] low amplitude packets, that evolve from %0.1 to 1% of the free-stream velocity measured at
y∗ = 0.6δ∗(x) are tracked, to focus on subharmonic amplification, effect of phase [58] and later on amplifica-
tion of modes related to the fundamental resonance [57]. The disturbance is generated by the superposition
of Nn = 80 Fourier modes, using f∗0 = 5Hz as the fundamental frequency, then, the unstable linear band is
covered (5Hz ≤ f∗ ≤ 80f∗0 ) which is equivalent to 0.0013 ≤ ω ≤ 0.1. In [59] the measurement streamwise
positions are between 400mm and 1300mm, spaced by 100mm. The spanwise length z∗d, was 0.36cm with
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37 measurement points.
The experimental parameters of [17] and [59] are shown in table 4.1. The excitation is located at x∗0, with
Reynolds number Re, the measurements were performed up to the maximum streamwise position x∗max.
The value %uRe1450 , is the disturbance amplitude at the position defined by the local Reynolds number
Re ∼ 1450, which is close to the perturbation source, and serves as an indication of the initial disturbance
amplitude. For the mentioned experiments, Re ∼ 1450 corresponds to the positions x∗ = 1600mm and
x∗ = 600mm on each experiment respectively.
Both experiments have similar non-dimensional parameters, but [58, 59] presents lower excitation am-
plitudes. The last experimental measurement points have similar local Reynolds number Remax. As a
consequence of the amplitude choice, in [17] turbulent spots were observed at this position, while in [59]
moderate nonlinear behavior was evidenced. Some wave packet experiments have been reproduced nu-
merically for comparison and to extend their results. [33] experiment was simulated by [44, 83] while [17]
experiment was simulated by [102]. A DNS simulation of the experiment [59] is not available in the litera-
ture at present.
It is expected that lower excitation amplitudes are better representations of real aircraft conditions at
cruise. Because of this, the experiment of [58] was chosen as a reference case for the current study. More-
over the experimental data base was available and had more information on the weakly nonlinear regimes,
which is the focus of the current work. It is important to note that the actual data used is not that from
[59], they comes from another very similar experiment for which the experimental results were available.
The experimental parameters were the same, with only a small difference in the wave packet amplitudes

Table 4.1: Experimental Parameters
Cohen Experiment (1991) Medeiros Experiment (1999)

U∞ 6.65m/s 17.3m/s
x∗0 800mm 203mm
ν∗ 1.49× 10−5m2/s 1.49× 10−5m2/s
δ∗0 2.13× 10−3m 7.195× 10−4m
Re 1035 835
Remax 2150 2114
x∗max 3500mm 1300mm
z∗d ± 40cm ± 18cm
%uRe1450 0.4% 0.2%

4.2 Disturbance Generation

Usually, in experiments and simulations of wave packets, the frequency spectrum of the perturbation is
carefully controlled, while less attention is given to the spanwise spectrum, which experimentally is also
more difficult to control. In the present simulations, the perturbation is constructed with the superposition
of a selected band of frequencies and spanwise modes, all with the same energy, covering the linear unstable
band defined by the stability diagram.
To perform the simulations, the total number of frequency modes Nn = 80 was considered, and 80 sym-
metric spanwise wave numbers (Nk = 40), in addition to the corresponding two-dimensional mode. The
time signal of the excitation was identical to that used by [59]. In the physical space, the resulting signal

in time and spanwise direction is a function similar to sin(x)
x . In the streamwise direction the shape of the

disturbance function is one single period of the coseno function. The perturbation is applied in the wall
normal velocity component. In summary, the so called pulse excitation used in the current study is then
defined as
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v′ = A3D

Nn∑
n=1

Nk∑
k=−Nk

[cos(α0(x− x0)± kβ0z) cos(nω0t)] (4.1)

with A3D the amplitude of each modes.

Using the dimensional parameters given in table 4.1 for the experiment [58], the non-dimensional flow
parameters used in the DNS simulation of this experiment are Re = 835 and Pr = 0.71. Although the
experimental Mach number is 0.05, in the DNS simulation Mach 0.2 was used, because by increasing
Mach number the numerical time steps can be increased and a lower number of iterations are required to
complete the simulation, while at the same time the flow remains substantially incompressible. This value
has already been used in other works on transitional incompressible boundary layer (e.g [74]). We also
performed tests at lower Mach numbers and demonstrated that the results of Mach = 0.2 are essentially
incompressible. Tests also performed in this study show that at Mach 0.3 some significant compressible
effects arise. With the reference parameters used in the simulation, the experimental measurement domain
in non-dimensional variables is defined by:
x0 = 284
0 ≤ x ≤ 1300mm/δ∗0 = 1808
y = 0.6δ∗(x)/δ∗0
Lz = 36cm/δ∗0 = 500
f0 = 5Hz × (u∞/δ

∗
0) = 2.0796× 10−4

ω0 = 2πf0 × (u∞/δ
∗
0) = 0.0013066

β0 = 2π/(36cm/δ∗0) = 0.0126

From these values the computational domain was defined considering extra size dimensions to avoid bound-
ary condition effects into the region of interest. The integration domain is:
0 ≤ x ≤ 2000
0 ≤ y ≤ 20 ≈ 2.58× δ99(x = 2000)
− π
β0
≤ z < π

β0

The boundary layer thickness δ∗99 can be written in terms of δ∗0 as δ∗99 ≈ 5
√

ν∗x∗

U∞
= 5
√

x
Reδ
∗
0 .

Test were performed to ensure that this domain was sufficiently large to represent a semi-infinite flat
plate immersed in an uniform flow. In the experiment, the time signal perturbation was composed by a
superposition of 80 Fourier modes with fundamental frequency f∗0 = 5Hz. In the non-dimensional vari-
ables, the perturbation frequency band is 0 ≤ ω ≤ 80ω0 = 0.10453, the spanwise wave number band is
−40β0 ≤ β ≤ 40β0, equivalent to −0.504 ≤ β ≤ 0.504.
In the computational domain, the perturbation has a format given by one period of the coseno function,
cos(α0(x − x0)), with x0 = 284 the center of the perturbation. The value α0 = 2π/32 was chosen to have
similar streamwise wave number of the most linearly unstable mode in the Reynolds number range studied.
Figures 4.1 and 4.2 show the perturbation in physical and Fourier space.
Variables of DNS uses global nondimensional variables, however, in the instability analysis sometimes it
is important to consider local nondimensional variables, using as reference length the local displacement
thickness δ∗(x). The local Reynolds number Reδ∗(x), local frequency ωδ and local spanwise wave number
βδ are related to the global ones by:

Reδ∗(x) = 1.7208
√
xRe, ωδ =

√
x

x0
ω, βδ =

√
x

x0
β (4.2)
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Figure 4.1: Perturbation composition, (a) two-dimensional spectrum, (b) format in streamwise direction,
(c) and (d) time signal and time spectral composition. Spanwise perturbation shape in physical space (e)
and spectrum (f ).

Figure 4.2: Perturbation format in x-z plane.
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4.2.1 Grid independence tests

Grid resolution in x and z direction are more demanding for nonlinear than for linear regime of transition
in boundary layer [15]. In the streamwise direction three grid resolutions were tested for wave packet
simulations, namely, ∆x = 4, ∆x = 2 and ∆x = 1. Tests revealed significant grid dependence in the
the nonlinear regime for ∆x = 4. In the figure 4.3 wave packets with two grid resolutions in streamwise
direction are plotted. With ∆x = 2 the results are fairly grid independent up to later stages of the weakly
nonlinear regime, which is the focus of the current work. In the following simulations, a grid with ∆x = 1
was employed for the calculations. A more refined grid was not possible to simulate with our current
computational resources, due to high computational and storage cost. The refinement in the wall normal
direction tests were performed for TS-waves in the defined computational domain (see figure 4.4), and lead
to the conclusion that for ymax = 20 and ny = 51 the results are independent of grid and domain extent.
In the spanwise direction, the resolution of 4 points per-wavelength was sufficient for grid independence
(figure 4.5). The grid employed in the wave packet simulations was nx = 2001, ny = 51, nz = 160. The
value of nz was chosen to provide resolution of four points per wave length in the mode 40β0 = 0.504,
which is the higher spanwise wave number captured in the experiment, but which was above the highest
spanwise wave number observed in the DNS results.
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Figure 4.3: Results for grid independence in (a) streamwise and (b) spanwise directions in the nonlinear
regime of the wave packet.
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4.3 DNS results

This section is organized as follows. First a small amplitude packet was simulated to produce a linear
evolution of a packet to serve as a reference for the nonlinear studies that followed. This constitutes
the next subsection. Then the experiments of [58] were reproduced numerically to demonstrate that the
simulations were a good representation of the actual physical observations. Next, the numerical results were
analyzed in detail to try to establish conclusions regarding the nature of the nonlinear regime observed
and the possible differences from the classical scenarios of unmodulated waves, such as one 2D wave in
combination with a pair of small amplitude oblique waves or secondary instability mechanisms, here-
called controlled transition. Finally possible causes for some small differences between the numerical and
experimental results were investigated.

4.3.1 Linear wave packet

To perform the analysis of the wave packet evolution, [16, 102] used predictions of a linear model and
LST to compare the evolution of isolated modes in the nonlinear packet. For the present analysis, a low
amplitude (linear) packet was employed as reference case. It takes into account effects as non-parallelism
and very weak influence of nonlinear terms of the Navier Stokes equations, hence, it may be a closer
representation of a linear wave packet generated experimentally. The evolution of the linear wave packet
is shown in figure 4.7. Perturbation amplitude is of the order of 10−5. In incompressible boundary layer
the packet displays the characteristic crescent shape with weak modulation in spanwise and streamwise
directions. Results in the spectral space can also be obtained, and are discussed in the next section (figure
4.10 (a)), together with results for the nonlinear wave packet. In the global nondimensional variables, the
frequency of the most amplified mode decays downstream, as can be seen in figure 4.11.

4.3.2 Comparison of numerical with experimental wave packet

To reproduce numerically the experimental results of hydrodynamic instability, it is crucial to employ
the excitation amplitude that generates a wave packet with the same amplitude in a linear position of
the experiment. Experimentally, the linear stages are observed up to x∗ = 600mm. For the nonlinear
simulation, the excitation amplitude was adjusted to match the experimental results at this location. In
figure 4.6, at the experimental measurement points, the streamwise velocity time signal at the centerline is
compared with the numerical results. The agreement is remarkable, in particular in view of the very small
amplitudes of the signals, with maximum amplitudes about 0.1% of the free stream velocity. Significant
differences are found only in the last positions, where strong nonlinear action takes place. Yet, even at
these stations the agreement can be considered good in general.
Figures 4.7 and 4.8, show the linear and nonlinear evolution in physical space on planes parallel to the
wall. A weak three-dimensional structure becomes stronger as the nonlinear effects increase downstream.
Differences between linear and nonlinear regimes are more clearly shown in figure 4.9.
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Figure 4.7: Linear wave packet at Mach 0.2, in y = 0.6δ∗(x). Contour levels at 90% (—) , 50% (–.–), 30%
(...) and 10% (– –) of the amplitude peaks in the packet.
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Figure 4.8: Nonlinear wave packet evolution at Mach 0.2, at y = 0.6δ∗(x). Contour levels at 90% (—) ,
50% (–.–), 30% (...) and 10% (– –) of the amplitude peaks in the packet.

In figure 4.10 the spectral evolution is compared for DNS linear, DNS nonlinear and experimental wave
packet, considering local nondimensional variables, using as reference length δ∗(x). More quantitative com-
parisons are provided in figure 4.12 at x∗ = 1200mm. Comparison of the spectrum obtained from DNS
simulation and experimental data, shows in general, good agreement. However, there are two significant
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differences, namely, an experimental asymmetry not present in the simulations due to the numerical for-
mulation considered and a weaker nonlinear amplifications in the fundamental and low frequency modes,
observed in the simulation. These differences will be addressed later in the analysis.
An important aspect in performing the analysis is that for direct comparison with the experimental results,
the u component of the velocity calculated by the DNS simulation, was interpolated into the experimental
measurement points defined in section 4.2, by using a spline method.
The computational domain has a larger size and higher spatial resolution in the three coordinates. The
interpolation was done only for direct comparison with the experiment, for subsequent analysis the DNS
domain and grid resolution was used.
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Figure 4.9: Comparison of linear (a) and nonlinear (b) wave packet at advanced position at y = 0.6δ∗(x).
Contour levels at 90% (—) , 50% (–.–), 30% (...) and 10% (– –) of the amplitude peaks in the packet.
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Figure 4.10: Comparison of spectral evolution at several measurement points for (a) linear DNS (b) non-
linear DNS and (c) experimental wave packet. 43
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Figure 4.11: Spectrum evolution of the linear wave packet in global nondimensional variables. The frequency
of the most amplified mode decays in downstream.
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Figure 4.12: Comparison of contour levels of linear, DNS and experimental spectrum in the nonlinear
position, x∗ = 1200mm.

44

DISTRIBUTION A. Approved for public release: distribution unlimited.



The interpolation of numerical results into the experimental physical domain (figure 4.13), suggests that
the experimental domain was a little too small in the spanwise direction, because in the interpolated DNS
results (figure 4.13(a)) the wave packet is not totally contained in the spanwise direction, as is observed in
the wave packet shown in the figure 4.9(b).

(a) (b)

Figure 4.13: Comparison of u′ component of the disturbance velocity in the experimental domain at x∗ =
1300mm, y = 0.6δ∗(x). (a) DNS results interpolated at the experimental domain, (b) Experimental results.
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4.4 Nonlinear modal analysis of DNS results

In the nonlinear regime it is possible to distinguish four important types of modes, here called linear,
subharmonic, fundamental and low frequency modes, as illustrated in figure 4.14. The subsequent analysis
investigates nonlinear bands separately.

ω

β
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4
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1

−0.5 −0.25 0 0.25 0.5
0

0.05

0.1

Figure 4.14: Definition of mode bands used for the analysis. (1) linear (2) fundamental (3) subharmonic
and (4) low frequency bands.

4.4.1 Subharmonic bands

Amplification of the modes in the subharmonic band is the focus of the present section. In figure 4.15, the
frames on the left column display amplitude evolution of isolated modes in the packet. The subharmonic
modes displayed are indicated in the frame of the right column by the circles in the contour plots of the
wave packet spectrum at position x∗ = 1200mm. A mode maintain a constant dimensional frequency
along the evolution, while results of hydrodynamic instability in the boundary layer are normally plotted
in non-dimensional variables based on local boundary layer parameters, which, hence, change along the
evolution of a mode. To emphasize that the evolution shown holds for modes, the modes are identified by
their spanwise wave number index k and frequency index n, which, for the signal processing used, remain
the same along the evolution of the mode. The selected subharmonic modes are shown in two groups,
one displayed in the top frames the other in the bottom frames. In the frames showing the amplitude
curves, the thick continuous blue line represents the fundamental 2D mode with twice the frequency of the
subharmonic band. This would be the linearly unstable mode driving a possible subharmonic resonance
that is investigated. The red dashed lines correspond to the nonlinear evolution of the subharmonic modes.
The dashed green lines correspond to the linear evolution of the same subharmonic modes, obtained from
the above discussed linear simulation that was performed for reference. Clearly, the subharmonic modes
display a nonlinear behavior that renders them substantially more unstable than in their linear evolution.
Several modes that are linearly stable display nonlinear instability.
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Figure 4.15: Amplification curves for subharmonic bands of linear (green lines), nonlinear (red lines) and
fundamental (blue lines) modes. The evolution of the mode indicated by the red point is shown in the
figure 4.16.
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Figure 4.16: (a) Phase, (b) streamwise wave number, (c) phase velocity for subharmonic resonance, (d) zoom
of (c), for the mode ω/2 = 0.059260, β = −0.2218, chosen from experimental spectrum at x∗ = 1300mm.

[86] investigated the phase-locking of subharmonic waves and its respective primary in a wave packet at
Mach 6. In their results, phase locking was observed only in the nonlinear regime and was used as an
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indication of subharmonic instability. In figure 4.16 a similar analysis is presented for the current results.
Figure 4.16(a) shows the phase variation of a number of modes along the x direction. Dashed lines and
solid lines correspond respectively to the primary and subharmonic mode indicated by the red point in
figure 4.15. Numerical results are shown for linear packet, nonlinear packet and controlled transition, all
with good agreement. It shows clearly that no significant phase adjustment is caused by nonlinerity. That
is expected for subharmonic instability of the C-type where the waves that resonate already match the
phase speed required for resonance. Indeed, this secondary instability is a limiting case of H-type instability
as the driving wave amplitude decays.
Conclusions are further supported by the distribution of streamwise wave number of these modes along
the streamwise direction, figure 4.15(b). Some irregularities are observed at the earlier and later stages,
but the bulk of the distribution is also not affected by nonlinearity. Figures 4.16(c) and 4.16(d) show the
actual phase velocities, with figure 4.16(d) showing that, for a large portion of the evolution, the phase
speeds of the resonant modes match each other only a little better under resonance. Once more the results
are consistent with subharmonic instability of a small amplitude driving wave.
As discussed in the literature review, the subharmonic instability in a wave packet is an issue not entirely
settled, with several aspects deserving more definite conclusions. What follows in an attempt to fill this gap.
Nonlinear behavior of the resonant type involves phase locking. When this occurs both modes, fundamental
and subharmonic reach the same phase velocity. However in the current situation, this is not clear evidence
of nonlinear behavior because from beginning both modes have same phase speed, even thought this is a
requirement for Craik triad resonance. This is shown in figure 4.16(c).
One important aspect in the subharmonic instability is that there is a threshold amplitude for the primary
driving wave, for which instability sets is. In boundary layers, as the primary waves grow, the subharmonic
growth rates increase. If the primary wave is not too large, it crosses the second branch, reaching its max-
imum amplitude and then decaying, while the subharmonic wave keeps growing. The subharmonic wave
reaches its maximum amplitude where the primary wave reaches the threshold amplitude again, but on
its decaying arm. Hence, the maximum amplitude of the subharmonic wave occurs downstream from the
maximum amplitude of the primary driving wave.

Figure 4.17 helps to illustrate this concept in the wave packet. The top frame indicates the subharmonic
mode tracked. For a packet in the boundary layer, the linearly unstable frequency band changes with the
packet evolution. Its frequency reduces as the Reynolds number based on global parameters increases (see
figure 4.11). A similar pattern may be observed for the subharmonic waves, although not so clearly.
For the analysis in figure 4.17, the subharmonic mode chosen was a subharmonic band peak at position
x∗ = 1200mm, which is a neighbor mode of the modes examined in figure 4.16. This streamwise position
was chosen for clarity. Figure 4.17, bottom frame, shows the evolution of the subharmonic mode in the
nonlinear packet (blue continuous line). It also shows the primary driving wave obtained from the nonlinear
simulation (blue dashed line). The red dashed line is the linear evolution of the subharmonic wave, which
is shown with two lines shifted in the vertical direction. The first aspect to discuss in the figure is that the
primary wave is virtually unaffected by the nonlinearity. The picture indicates further that the nonlinear
subharmonic wave departs from its linear behavior at a position about x∗ = 0.25m. The picture also shows
that at some position downstream the nonlinear subharmonic wave settles back to its linear behavior. The
amplitudes of the primary wave at which the subharmonic departs from linear behavior and returns to it
are also indicated in the figure, and they are virtually identical. Overall the results convey the idea of a
nonlinear process of a subharmonic wave which is governed by the amplitude of the primary wave and has a
well defined threshold amplitude. Moreover the primary wave remains unaffected by the nonlinear activity.
The observations are consistent with a subharmonic instability driven by a small amplitude primary wave.
It is interesting to mention in passing that the subharmonic wave does not reach its maximum amplitude
at the decaying threshold point, owing to the fact that at that x location the nominally subharmonic
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waves have already become linearly unstable. Sometimes, in the literature the pair of resonating modes are
identified by their peaks in the spectrum in a fixed position. However, as explained before, the peaks of
the fundamental and subharmonic waves must normally occur at different streamwise positions. This fact
incorrectly suggest the presence of detuned subharmonic resonance.

Figure 4.18 shows the amplitude evolution of the primary and subharmonic modes indicated in the two-
dimensional spectrum by the red points, calculated in the experimental domain. The amplitude evolution
is given for experimental (read lines) and nonlinear numerical (blue lines) results, and they agree very well
with one another. Amplification curves also are compared with the corresponding linear evolution (black
line). Once more, the primary wave is unaffected by nonlinearity while the subharmonic wave becomes
nonlinear very early in its evolution. The green lines represent the subharmonic resonance induced by
controlled transition, meaning, a two dimensional wave with the frequency of the primary wave and a
pair of subharmonic waves with the same frequency and spanwise wave numbers of the other subharmonic
waves. The amplitude of the primary wave in the controlled transition was chosen to match the nonlinear
subharmonic wave growth rate in the packet. Indeed the matching is fairly good, and indicates that the
phenomenon observed in the packet corresponds to subharmonic resonance of a primary wave at some
amplitude. The amplitude of such primary wave is not that of the 2D fundamental wave composing the
packet.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

x
*
 [m]

lo
g

1
0
(|

F
F

T
(u

/ )|
)

 

 

(1,0)     DNS (1/2,1)  DNS (1/2,1)  DNS linear (1,0)     H−type (1/2, 1) H−type

0 5 10 15 20

5

10

15

20

25

30

35

40

45

50

k

n

 

 

2

4

6

8

10

12

14

16

18
x 10

−6

Figure 4.17: Amplification curves for the subharmonic mode (25,15) and its fundamental mode. The thresh-
old amplitude of the driving mode (1, 0) (indicated by the gray dashed lines) catalyses the subharmonic
amplification by increasing the growth rate. The nonlinear growth rate for the mode (1/2, 1) calculated
from H-type controlled transition, matches with the growth rate for the same mode in the packet.
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Figure 4.18: Amplification curves of the most amplified subharmonic in the experimental domain at x∗ =
1200mm.

Figure 4.19 shows the envelope of the primary wave used in the controlled transition case studied in figure
4.18. It also shows the envelope of the wave packet along the centerline at a region where the primary
wave in the control case reaches a maximum. The bottom figure shows results for the nonlinear packet. As
shows previously, the primary waves are virtually unaffected by nonlinearity, the linear results shown are a
representation of the linear part contained in the nonlinear packet. The results show that the amplitude of
the primary wave in the controlled transition case is about 80% of the maximum amplitude in the packet.
In other words it can be said that the effective amplitude of the packet in what concerns the subharmonic
secondary instability is a little smaller than the maximum amplitude in the packet. The concept of effective
amplitude was presented by [20] in the context of streamwise-modulated-only waves, and also used by [60]
in the context of spanwise-modulate-only waves. In both cases, the effective amplitude was the maximum
amplitude in the packet. For modulation in both directions, the amplitude is a little lower.
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To study the evolution of the subharmonic band in more detail, the dominant subharmonic mode was iden-
tified at several nonlinear downstream positions, between x∗ = 1000mm and x∗ = 1300mm. In figure 4.20
these modes are indicated on the spectrum at x∗ = 1300mm with the colored circles. The most amplified
subharmonic mode in the spectra reduces slowly its frequency and spanwise wave number downstream,
probably up to reach a preferred mode, as [102] suggest. The corresponding amplification curves are plotted
in figure 4.21, they are compared with the amplification curves for the oblique mode of the linear wave
packet and the curves generated by the interaction of the triad of waves that induces H-type resonance for
the same modes.
At x∗ = 1000mm the nonlinear growth rate of the oblique mode in the packet is driven by the correspond-
ing 2D mode, as indicated by the threshold points (gray dashed lines). Its nonlinear amplification along
the entire domain can be reproduced very closely with the controlled transition, including the location of
the threshold amplitude. This behavior is similar for the neighbor modes, as can be seen in figure 4.22.
In downstream positions small, but increasing deviations are observed from the controlled case, in the
neighbor modes also are observed this kind of deviations. At x∗ = 1300mm the nonlinear amplification
curve can not be explained by the triad interaction for the controlled correspondent case. As conclusion,
nonlinerities present in the wave packet evolution that can not be generated by the three-wave interac-
tion are weak in the first half of the domain, but increase in downstream and become comparable to the
subharmonic growth, finally dominates the nonlinear amplification rate of the subharmonic band.
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Figure 4.20: Subharmonic most amplified mode at several streamwise positions between x∗ = 1000mm and
x∗ = 1300mm.
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Figure 4.21: Amplification curves for the most amplified subharmonic modes denotes as (n,k). (a)
(29, 14)x=1000mm, (b) (24, 13)x=1100mm , (c) (21, 12)x=1200mm, (d) (19, 11)x=1300mm.
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Figure 4.22: The nonlinear amplification of subharmonic modes near to the peak in the subharmonic band,
at x∗ = 1000mm, can be reproduced closely with H-type controlled transition. (a) 25, 15, (b) 27, 14.
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4.4.2 Asymmetry generated by the nonlinear effects

From the amplification curves it is clear that subharmonic modes grow nonlinearly from a position down-
stream near the disturbance source. However in the time signal velocity their effect is not visible due to
subharmonic low levels. When the subharmonic component in the packet is in phase with its correspondent
fundamental mode (2D), their amplification is optimized, and growing deformation of the wave packet is
observed in downstream, as can be seen in figure 4.23. This is caused by different propagation velocities
inside the wave packet, as is indicated by the dotted lines and the points in figure 4.23.
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Figure 4.23: Effect of subharmonic nonlinearity on wave packet shape.

4.4.3 Subharmonic seed

Following [59], to investigate the origin of subharmonic modes, the subharmonic band was removed from
the perturbation spectrum (figure 4.24). In the resulting spectra (figure 4.26), subharmonic modes develop
almost equal to the previous scenario (see figures 4.18 and 4.25), with the complete perturbation spectrum.
Then, subharmonic modes are generated by nonlinear interaction, as is evident from the amplification
curves (see figure 4.26)), however the responsible mechanism is unknown, but there are some tentative
explanations [18].
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To evidence the generation and amplification of the subharmonic band, in the figure 4.27 are plotted
the amplitude curves for the mode (24,13) (indicated by the black lines), which corresponds to the most
amplified subharmonic mode at the position x∗ = 110mm. For this mode, the subharmonic generation
process, develops from the perturbation to the position in downstream around x∗ = 0.6m, then, nonlinear
amplification occurs as in the case with full spectrum content at the disturbance. In the packet, this kind
of nonlinearity acts in conjunction with the H-type resonance.
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Figure 4.24: Spectrum of the perturbation with subharmonic band removed.
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Figure 4.25: Comparison of spectrum levels at x=1300mm, to investigate subharmonic seeding.
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Figure 4.26: Amplification curves and spectrum of the wave packet generated with subharmonic band
removed from the perturbation spectra.
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Figure 4.27: Amplification curve of the mode (24, 13) of the subharmonic mode generated in the reduced
disturbance spectrum.

4.4.4 Fundamental bands

In the fundamental band two group of modes were selected by changing their frequencies, they are indicated
by the yellow circles in figure 4.28. The first band, shown in the top frames, has the same frequency of
the dominant 2D mode, that could amplify as K-type breakdown. The second band, shown in the bottom
frames, has higher frequencies, maintaining the same spanwise wave numbers of the first band. The modes
are identified by their indices (n, k) in the spectrum. These bands are studied because [16] shows strong
nonlinear amplification in these bands, but without look for a cause. Also, [57] report similar amplification
for lower amplitudes of the wave packet . Amplification curves reveals that nonlinear growth dominates
from downstream positions around x∗ = 800mm and x∗ = 700mm for the first and the second group
respectively.
On each group a mode was selected , to verify fundamental resonance condition. In figures 4.29 and 4.30
locking between 2D fundamental wave and the oblique mode can be observed, for both bands. In the
second band, locking occurs in a upstream position than in the first band, because the 2D wave reach
threshold amplitude before, then, the nonlinear amplification is triggered early for higher frequencies (see
figure 4.11).
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Figure 4.28: Amplification curves for fundamental bands of linear (green lines), nonlinear (red lines) and
fundamental (blue lines) modes.
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Figure 4.29: Mode of the first band, n = 32, k = 25, (a) Phase, (b) streamwise wave number, (c) locking
in phase velocity for fundamental resonance.
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Figure 4.30: Mode of the second band 2 , n = 40, k = 25, (a) Phase, (b) streamwise wave number, (c)
locking in phase velocity for fundamental resonance.

From the experimental spectrum it was chosen the most amplified in the fundamental band, with its
corresponding 2D mode, as indicated in the figure 4.31(b) by the red circles. For the 2D and oblique
mode, the amplification curves (figure 4.31(a)) are compared for experimental, simulation and DNS linear
reference case. Also, a controlled case of K-type resonance was generated to reproduce the nonlinear growth
rate for the oblique mode. The resultant amplifications curves are plotted in green lines. The growth rate
calculated in this manner is very similar to that observed in the packet. However the level at the last
positions is underestimated in the DNS simulations. In following sections this fact is considered in detail.
The effective amplitude (figure 4.32) is around 20% larger than the maximum wave packet amplitude.
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Figure 4.31: Amplification curves of the most amplified mode in the fundamental band of the experimental
spectrum.
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Effective amplitude for fundamental resonance

To reproduce nonlinear growth rates for modes oblique modes (1, 1) by controlled transition of K-type
breakdown, the threshold amplitude of the 2D wave must be higher than the wave packet amplitude. In
the experiment and simulations, this kind of instability rises in the last measurement points with higher
growth rates than H-type resonance.
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Figure 4.32: Effective amplitude for K-type breakdown.

4.5 Effective experimental conditions

In previous sections, it was shown that main difference between DNS and experimental results was in the
modes associated with K-type breakdown. Nonlinear growth rates for low frequency modes and fundamental
ones, calculated from DNS are in accordance with experimental growth rates, however, these modes have
lower levels in DNS than observed experimentally. To attempt identify the cause of the levels mismatch in
the experiment, some effective experimental imperfections were investigated.

4.5.1 Pressure gradient

The pressure coefficient Cp shown in figure 4.33 corresponding to the measured in the experiment, was
included into pressure distribution at the outerflow boundary. Amplification curves were obtained for a wave
packet with the experimental pressure gradient, for a subharmonic (figure 4.34(a) ) and a fundamental mode
(figure 4.34(b) ). From the amplitude curves it can be concluded that the experimental pressure gradient
has no effect on the fundamental modes level, because the difference in levels of the mode (1,1) between
DNS result and experiment remains almost equal as in the previous case.
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Figure 4.33: Experimental pressure gradient curve. (Reproduced from [59].)
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Figure 4.34: Amplification curves and spectrum at x∗ = 1200mm, for a wave packet with the experimental
pressure gradient, (a) subharmonic and (b) fundamental mode.
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4.5.2 Amplitude calibration

The experiment displayed a asymmetry in spanwise direction, which was not present in DNS simulations
due to the idealization of the problem. To evaluate the effect of this factor in the fundamental mode
amplification, a modal calibration in Fourier space was done, in the linear region. This strategy was used
successfully in [56] to compare numerical and experimental data. It is based on weighting each mode, to
have the same amplitude of the experimental spectrum in a linear position.
Calibration was done at x∗ = 600mm. Also the experimental pressure gradient was considered. In the
spectrum at position x∗ = 1300mm, from calibrated spectrum (figure 4.35) can be observed that funda-
mental modes remains underestimated. Moreover the subharmonic bands present a higher deviation from
experimental, than obtained for the simulation with uniform spectra.

Also [13] shows that spectrum of the ensemble-averaged is different from the ensemble average of the
individual spectra. It is not clear DNS result to which can be associated. For the present analysis results
were compared directly, but in future works this detail deserve more attention.
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Figure 4.35: Amplification curves and spectrum at x∗ = 1200mm, for wave packet with experimental
pressure gradient and spectrum calibration at position x = 600mm. (a) Subharmonic and (b) fundamental
mode.
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4.5.3 Amplitude effect

Experimental [64] and numerical works [88] relate the high levels of fundamental modes with disturbance
amplitude. With similar flow parameters, [64] establishes a linear correlation between the level of the
modes in the fundamental band and the disturbance amplitude. Furthermore, notes that the spanwise
wave numbers of these modes are around twice of the highest linearly unstable oblique modes (see figure
4.36).

Figure 4.36: 1) Higher levels of the disturbance amplitude are linearly related to higher levels of the
fundamental modes. Reproduced from [64, figures 7.10 and 7.11].

To investigate the amplitude effect, a wave packet generated with an amplitude %20 higher than in previous
case was simulated. In figure 4.37 it can be seen that the resulting spectra has levels in fundamental band
that are similar to the experimental ones, however, low frequency modes present higher amplification. Also,
the subharmonic modes are overestimated.
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Figure 4.37: Amplification curves and spectrum for a wave packet with disturbance amplitude increased
20%. (a) subharmonic and (b) fundamental mode.

From the spectrum in figure 4.37, the fundamental resonance seems to be concentrated around the band
centered in ω = 0.09075. In the figure 4.38, the amplitude of the corresponding spanwise modes is plotted.
Considering as fundamental modes, the modes centered in (0.0975, 0.125), denoted as (1,1). It is observed
a nonlinear amplification in the spanwise harmonics, (1, 2β) and (1, 3β), which suggest the presence of
K-type mechanism in this band.
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Figure 4.38: Spanwise modes for ω = 0.09075 at x = 1300mm.
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Chapter 5

Wave packet in compressible boundary
layer

Some observations at Mach 0.5, considering white noise [63], nonlinear growth [97], development of transi-
tion in an airfoil [48] and secondary instability mechanisms [21] suggest that up to Mach 0.5 compressibility
has a weak influence on the initial nonlinear stages of transition in the boundary layer. Then, for the present
analysis it where considered Mach> 0.5 was considered.
This section is organized as follows. Initially the numerical set-up is defined. Next, the linear and nonlinear
evolution of a wave packet is investigated by DNS simulation, considering a boundary layer on a flat plate
at Mach 0.7 and 0.9. The main differences for the wave packet in an incompressible boundary layer are
established and the early nonlinear stage is investigated. Finally, to consider a scenario that may be closer
to natural transition, results for interactions of two wave packets at Mach 0.9 are presented.

5.1 Numerical set-up

To reduce computational time required to perform the simulations, it was considered as reference case the
experimental parameters of [17], for incompressible boundary layer. This experiment introduces a relative
high level of disturbances amplitude which induces development of transition in a smaller region of the
boundary layer in streamwise. The disturbance function was the same considered for the incompressible
case, covering the same bands and controlling the perturbation spectrum as shown in section 4.2. The
perturbation was located at the position x0 = 200. From the experimental parameters defined in the table
4.1 the computational domain is:
0 ≤ x ≤ 1200
0 ≤ y ≤ 20 ≈ 3.5× δ99(x = 1200)
− π
β0
≤ z < π

β0

It was employed the same grid resolution as in the incompressible boundary layer, the resultant num-
ber of grid points in each direction is nx = 601, ny = 51, nz = 160. Some tests, not shown here, reveals grid
independence for this computational arrangement. The flow parameters for DNS simulation are Re = 1035,
Pr = 0.71, and the considered Mach numbers, M∞ = 0.7 and M∞ = 0.9. In all simulations isothermal
wall was considered. with Tw = 1.
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5.2 Wave packet in a boundary layer at Mach 0.7

At Mach 0.7 three wave packets were simulated, a low amplitude packet (linear) to be used as reference
case and two nonlinear packets with amplitudes a1 = 3.5 × 10−5 and a2 = 2.5 × 10−5. The perturbation
amplitudes were chosen to guarantee a linear region for at least a short distance from the perturbation
location. This condition is verified by comparison of the amplification curves for several modes with the
linear case.

5.2.1 Linear wave packet

The N-factor allows to identify the most linearly unstable mode at a fixed spanwise wave number. The
N-factor is defined as:

N = ln

{
A(x)

Aref

}
(5.1)

As illustration, for Mach 0.7, the resultant N-factor curves are shown in figure 5.1. The most unstable mode
has the highest value of N, in the figure, it is indicated by the red line. From the current DNS simulations
for linear wave packets at several Mach numbers, the most unstable 2D and 3D mode were identified from
the N-factor curves and spectrum. Results, shown in figure 5.2, reveals that for Mach ≤ 0.7 the most
amplified mode is 2D, indicated by (1, 0). At higher Mach numbers, a band of oblique modes centered
in β ∼ 0.07 are linearly more unstable. In all cases, the frequency of these modes decays with the Mach
number. As a consequence, the modes influenced by the nonlinear amplification may change with the Mach
number.
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Figure 5.1: N-factor curves for Mach 0.7. The red line indicates the mode 2D most amplified, which in this
case corresponds to ω = 0.0486.
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Figure 5.2: Variation of the frequency of most amplified mode with Mach number. From Mach 0.8, oblique
modes around β ∼ 0.07 are the linearly most unstable.
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5.2.2 Nonlinear wave packet

For the amplitude a1, the linear and nonlinear wave packets are compared at an advanced downstream posi-
tion in figure 5.3. The linear wave packet has a regular and smooth distribution of amplitude with no strong
modulation in spanwise and streamwise. The nonlinear packet presents well defined three-dimensional struc-
tures, higher amplitudes are concentrated in a small region at the center of the packet. In figure 5.4 the
spectral evolution is shown, for linear and nonlinear wave packet in global nondimensional variables. The
linear amplification concentrates energy in the 2D modes, and, as occurs in the incompressible boundary
layer, the frequency of the dominant mode decays downstream.
In the nonlinear wave packet the spectrum gains energy, mainly in the subharmonic band and low frequency
modes, a similar behavior was observed in the incompressible case (figure 4.37). For a more quantitative
analysis the spectrum at the nonlinear position x = 972 was selected. Figure 5.5 allows to separate clearly
the linear from the nonlinear bands, by comparison of spectrum levels. From this spectrum a mode repre-
sentative on each band was chosen, to compare its amplification curve with the linear wave packet (figure
5.6).
Each mode is identified in the figure by the color and the indices (n, k) in the legend of the figure. Near
the perturbation location, at x = 200, the amplification curves of the nonlinear case follow the linear
ones, because the amplitude disturbance was chosen to satisfy this condition. At downstream positions, all
selected modes grows with higher growth rates than linear ones. For the considered computational domain,
low frequency modes and the subharmonic band, denoted by the red circle, are the nonlinear dominant
modes.
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Figure 5.3: (a)Linear and (c) nonlinear wave packet at Mach 0.7, in y = 0.6δ∗(x). Contour levels at 90%
(—) , 50% (–.–), 30% (...) and 10% (– –) of the amplitude peaks.
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Figure 5.4: Spectral evolution at Mach 0.7, for linear and nonlinear wave packet, with a1 = 3.5× 10−5.
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Figure 5.5: Spectrum levels for Mach 0.7 at x=972.
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Figure 5.6: Amplification curves for Mach 0.7 for selected modes in the spectrum at the position x = 972.
All bands shows strong nonlinear amplification.
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5.2.3 Amplitude effect

To test effect of disturbance amplitude a packet with a lower amplitude than in previous case a2, was
simulated. A higher amplitude was not considered because it would be nonlinear from the source. The
spectrum evolution (figure 5.7) and amplification curves (figure 5.8) reveal that in contrast to the case
with higher amplitude, only two bands have nonlinear amplification. The subharmonic and low frequency
modes, remain growing in the considered domain. The nonlinear fundamental band is much reduced in
comparison with the higher amplitude case.
Velocity signals for the two nonlinear wave packets at the centerline are shown in figure 5.9. The packet
with higher amplitude has stronger amplification and deformation relative to the linear and the lower
amplitude ones. The amplitude has an important role in the nonlinear mechanisms that are triggered in
the transition region.
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Figure 5.7: Spectral evolution for Mach 0.7, for nonlinear wave packet with disturbance amplitude a2 =
2.5 ∗ 10−5.
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5.2.4 Analysis of possible secondary instability regime

To verify if the subharmonic band has a behavior similar to that observed in the incompressible boundary
layer, discussed in section 4.4.1, two modes were selected from the spectrum at the position x = 972,
as shown in figure 5.10. The amplification curves for the selected modes in figure 5.10(a) reveal a strong
deviation from the linear growth rate at the position x ∼ 280, that remains decaying. The oblique mode
(1/2, 1) is amplified nonlinearly up to position x ∼ 800, here it recovers the linear growth rate. Changes in
the growth rates for the oblique mode are driven by the threshold amplitude of the 2D wave, as indicated
by dashed lines. The mode shown in figure 5.10(b) also presents nonlinear amplification, but not recovers
the linear growth rate when the correspondent fundamental wave reach the threshold amplitude, even it
remains growing. This fact suggest the presence of another nonlinear amplification source.
In the fundamental band, the same analysis was carried out for a pair of modes (figure 5.11) to verify the
presence of K-type mechanism. Threshold amplitudes of the driving 2D wave show that amplification do
not corresponds with this mode. Nonlinear amplification could be generated by subharmonic or detuned
subharmonic resonance, and influenced by nonlinear distortions, as was observed in the incompressible
case, (see section 4.4.1).
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Figure 5.10: Spectrum at the position x = 972, for the wave packet generated with amplitude a1 = 3.5∗10−5.
(a) Most amplified subharmonic mode (b) non identified resonance, could be a detuned resonance.
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Figure 5.11: (a) The oblique mode (1,1) does not resonates with the fundamental mode (1,1). (b) Non
identified resonance. a2 = 3.5× 10−5.

5.3 Wave packet in a boundary layer at Mach 0.9

As in the previous case, a linear and a nonlinear wave packet were simulated, with isothermal wall, Twall = 1,
at Mach 0.9. This Mach number is interesting because it is typical for transport aircraft at cruise.

5.3.1 Linear wave packet

From DNS simulations, it was found that at Mach 0.9, the linear growth rates are around 10 times lower
than growth rates for incompressible boundary layer for ω 0.05. Hence, the boundary layer presents a
longer transition region. Comparison (figure 5.12) for linear wave packet at Mach 0.2 and Mach 0.9 at the
centerline shows that, while for the incompressible boundary layer the wave packet already amplifies, in
the compressible case the packet decays.
In the physical space (figure 5.13), the wave packet has low modulation in spanwise, but more intense
than in the incompressible regime, as can be observed in figure 5.16. The spectral evolution of the linear
wave packet in global nondimensional variables (figure 5.14), reveals that in contrast with all the previous
cases, the most linear unstable modes are oblique, centered around the mode ω = 0.41 and β = 0.1, which
generates a higher modulation of the wave packet in spanwise direction and is associated with the more
curved ...
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Figure 5.12: Comparison of linear wave packet for (a) Mach 0.2 and (b) Mach 0.9 at the centerline.
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Figure 5.13: Nonlinear wavepacket at Mach 0.9, in y = 0.6δ∗(x). Contour levels at 90% (—), 50% (–.–),
30% (...) and 10% (– –) of the amplitude peaks in the packet.
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Figure 5.14: Comparison of linear and nonlinear spectrum evolution at Mach 0.9
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5.3.2 Nonlinear wave packet

Evolution in the physical space (figure 5.15) shows three-dimensional structures, with strong streaks located
at the center of the packet and oblique waves, as was observed in the nonlinear case for Mach 0.7. In figure
5.16 linear and nonlinear wave packets are compared, and a group of oblique waves with a propagation
angle ψ ∼ 450 can be identified.
In the spectral evolution (figure 5.14) only two bands presents nonlinear amplification, subharmonic and low
frequency modes. From figure 5.17 the linear and nonlinear bands can be separated easily. A more precise
quantitative analysis can be done from the amplification curves shown in figure 5.18, which corresponds to
the spectrum at the position x = 1132, by selecting representative modes to be tracked along the evolution.
Amplitude of nonlinear wave packet was chosen to be linear in a region next to the perturbation region.
There are two bands of modes that amplify nonlinearly, low frequency modes, responsible for strong streaks
and the subharmonic band. Low frequency modes, are strong near the perturbation source, but eventually
decay, with the linear growth rate, as can be observed in the figure, by the superposition of the linear
amplification curve in the last part of the domain. Only the subharmonic modes amplifies nonlinearly and
in sustained throughout the evolution. Yet, from the spectral evolution, figure 5.18 shows that the global
behavior is to decay. To investigate this aspect, the domain of the simulation was extended in spanwise
and streamwise, up to x = 2500. The resulting spectral evolution is shown in figure 5.19, and the previous
behavior remains, also from the position Re/x ∼ 1100 the subharmonic modes begin to dominate the
transition process, as can be seen in the amplification curves for the extended domain, (see figure 5.20).
Finally the phase locking condition is shown in figure 5.21, for the selected mode, Craik condition is
satisfied, hence the nonlinear locking is not evident.
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Figure 5.15: Nonlinear wavepacket at Mach 0.9, in y = 0.6δ∗(x). Contour levels at 90% (—) , 50% (–.–),
30% (...) and 10% (– –) of the amplitude peaks in the packet.
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Figure 5.17: Comparison of linear and nonlinear spectrum levels at Mach 0.9 in x=1132.
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Figure 5.19: Spectrum evolution of nonlinear wave packet at Mach 0.9 in extended domain in streamwise
direction, with xmax = 2500.
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5.4 Interaction between wavepackets in a boundary layer at Mach 0.9

In the Mach 0.9 boundary layer, the nonlinear stage of the wave packet occupies a larger region than in the
incompressible boundary layer, hence, the wave packet can spread along the domain mainly, in spanwise
direction, which is a favorable factor for wave packet spanwise interaction. An isolated packet may represent
a rare scenario in natural transition, spanwise interaction of packets could be more realistic model and in
the literature there are no results for this kind of problem. Interaction between wave packets may be a
destabilizing factor.
For the wave packet interaction study, two cases were considered, a pair of wave packets with two different
separations, to represent approximately 50% of overlap in the linear region and 50% in the nonlinear region.
The distances between packet centers were d = 30 and d = 60 respectively. The computational domain
and flow parameters were maintained. For each case, the corresponding pair of low amplitude (linear) wave
packets were generated by the superposition in the physical space of two isolated packets, to be used as
reference case.

5.4.1 Pair of wave packets separated by d = 30

In physical space, the evolution for the linear pair of wave packets is shown in figures 5.22 and 5.23 for the
nonlinear pair. At the initial positions the two packets can be easily identified . Further downstream, they
are joined in a unique structure, with a stronger modulation than the isolated packet. The nonlinear pair
of wave packets develops strong streaks, with higher amplitude than in isolated wave packet.
The spectral evolution for the linear and the nonlinear cases (figure 5.24) shows amplification for bands
centered around specific modes. In the nonlinear case, strong steady streaks are amplified. In particular, the
mode (ω = 0.045, β = 0.16), seems to generate the harmonic (0,0.32), that corresponds to the amplification
of the mode, (0, 2β), as occurs in the oblique transition.
From comparison of spectrum levels at x = 1132, linear and nonlinear bands easily can be identified (figure
5.25) . The amplification curves were calculated for selected modes (figure 5.26) in several bands. Steady
streaks display sustained nonlinear growth along the evolution. In general, it is observed a destabilizing
effect by the wave packet interaction, because modes in the others bands have nonlinear amplification, in
contrast to the observations on the isolated wave packet.
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Figure 5.22: Linear evolution in physical of a pair of wave packets separated by d = 30.
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Figure 5.23: Nonlinear evolution in physical space of a pair of wave packets separated by d = 30.
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Figure 5.24: Comparison of linear and nonlinear spectral evolution for two packets separated d = 30.
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Figure 5.25: Comparison of spectrum contour levels at position x = 1132.
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Figure 5.26: Amplification curves for a pair of wave packets separated 30 units.
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5.4.2 Pair of wave packets separated by d = 60

In physical space, the evolution for the linear and nonlinear pair of wave packets are shown in figures
5.27, 5.28 respectively. At the initial positions the two packets can be easily identified, they preserve their
individual structure for a substantial part of the evolution. The nonlinear evolution in the last frame in
figure 5.28, resembles two isolated packets with a small interaction region at the center of the domain.
The steady streaks have similar amplitudes than the isolated packet. The overlap region, presents higher
amplitude, but lower than in the separation d = 30. For better comparison in the physical space, the three
cases considered, isolated packet and the two pair interaction, are shown in figure 5.29.
The spectral evolution for linear and nonlinear cases (figure 5.30) shows amplification for bands centered
around specific modes. In nonlinear the case, strong steady streaks are amplified.
The mode (ω = 0.045, β = 0.06), could be generating the harmonic (0, 0.12), that corresponds to ampli-
fication of the mode, (0, 2β). Also amplification of the mode (0, 4β) is observed, as occurs in the oblique
transition. There is also a modification of the dominant stationary spanwise mode, in relation to the pre-
vious case.
From comparison of spectrum levels at the nonlinear position x = 1132, linear and nonlinear bands can be
easily identified (figure 5.31). The amplification curves were calculated for selected modes (figure 5.32) in
several bands. Steady streaks display sustained growth downstream. In general, it is observed a destabiliz-
ing effect by the pair of wave packet interaction. However the effect is weaker than observed in closer pair
of packets but stronger than for the isolated packet.
In the cases considered, the interaction of wave packets generated regions in the physical space of construc-
tive superposition. This local interaction had a global impact in the spectral evolution, changing drastically
the character of the nonlinear evolution in several bands in the spectrum, in comparison with the isolated
wave packet.
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Figure 5.27: Linear evolution of a pair of wave packets separated by d = 60.

200

400

600

800

1000

1200

−200 −100 0 100 200
z

x

−0.02 −0.01 0.00 0.01

u'

 

200

400

600

800

1000

1200

−200 −100 0 100 200
z

x

−0.006 −0.003 0.000 0.003

u'

 

200

400

600

800

1000

1200

−200 −100 0 100 200
z

x

−0.006 −0.004 −0.002 0.000 0.002

u'

 

200

400

600

800

1000

1200

−200 −100 0 100 200
z

x

−0.006 −0.004 −0.002 0.000 0.002

u'

 

Figure 5.28: Nonlinear evolution of a pair of wave packets separated by d = 60.
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Figure 5.29: Wave packet interaction, with distances between center packet (a) d = 30 , (b) d = 60 , (c)
isolated packet.
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Figure 5.30: Linear and nonlinear spectral evolution for a pair of wave packets separated d = 60.
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Figure 5.31: Comparison of spectrum levels for a pair of linear and nonlinear wave packets separated d = 60
at x=1132.
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Figure 5.32: Amplification curves for a pair of wave packets separated d = 60.
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Chapter 6

Transition generated by white noise

A more realistic and hence, complicated scenario for natural transition, is transition generated by white
noise. In this chapter results of DNS simulations at Mach 0.2 and Mach 0.9 are presented. In both cases,
a low amplitude case (linear) to be used as reference and a nonlinear evolution are considered. Also a
preliminary analysis is presented. The focus of this chapter is to evidence the main differences and the
influence of compressibility on this kind of problem, to plan future detailed works. [86, 87] investigated a
link between secondary instability mechanisms, wave packet evolution and natural transition for Mach 6.
At subsonic Mach numbers there are no works with this approach.
The objective of these simulations is to identify main characteristics of transition induced by white noise
and to establish the differences with the wave packet evolution. This information could help to plan future
detailed analysis.

6.1 Generation of white noise disturbance

A time periodic random signal was generated, with period T = 2π/ω0. The random phase φk was applied
in frequency and spanwise modes, keeping the energy equal for all modes, as can be seen in perturbation
spectrum (figure 6.1). The perturbation function employed was:

v′ = A3D

Nn∑
n=1

Nk∑
k=−Nk

[cos(α0(x− x0)± (kβ0z + φk)) cos(nω0t+ φn)] (6.1)

where −π ≤ φn < π was generated by using Fortran’s rand function. For white noise simulations, the
computational domain and flow parameters used in Chapter 5 were maintained.
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Figure 6.1: Temporal and spatial disturbances used to generate white noise perturbation.

6.2 White noise evolution at Mach 0.2

In figure 6.2 linear and nonlinear evolution of white noise are compared in the physical space. Linear
case presents smooth distribution of amplitude across entire domain with low amplitude variations, of
the order of ∼ 10−5. The amplitude of the nonlinear case was chosen to provide a linear region after
perturbation region, but also to induce nonlinear growth at some downstream position. To observe nonlinear
amplification, a disturbance amplitude ∼ 4 times larger than used for isolated wave packet was needed.
In the nonlinear case, lambda vortex-like structures are observed at localized regions, which have the higher
amplitudes. This observation suggest the local presence of fundamental and/or subharmonic resonance.
These vortices structures appear and disappear in time. After the initial transient travels out from the
computational domain, Fourier analysis was applied in spanwise direction and in time. The spectrum
evolution for the linear and the nonlinear cases, is shown in figure (6.4). The linear evolution is identical
to that of isolated packet, because the linear evolution is independent of the phase, and the modes do not
interact. In the nonlinear evolution linear band remains strong, but now, low frequency modes are amplified
(figure 6.5). The linear and the nonlinear bands can be identified in figure 6.6, from the superposition of
spectrum levels.
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(a) (b)

Figure 6.2: (a) Linear and (b) nonlinear evolution at Mach 0.2 for white noise disturbance. Lambda vortex
are generated in nonlinear case.

(a) (b)

Figure 6.3: (a) Linear and (b) nonlinear evolution of white noise at Mach 0.9. Streaks along entire domain
are generated.
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Figure 6.4: Linear and nonlinear evolution of spectral content for white noise perturbation at Mach 0.2.
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Figure 6.6: Comparison of spectral levels at x=1192. Low frequency modes are amplified nonlinearly.
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6.3 White noise evolution at Mach 0.9

In figure 6.3 the linear and nonlinear evolution are compared in the physical space at Mach 0.9. Linear
case presents a smooth distribution of amplitude across the entire domain with low amplitude variations,
about ∼ 10−5. The amplitude of the nonlinear case was chosen to provide a linear region downstream of
the perturbation region, but also to induce nonlinear growth at some downstream position. To observe
nonlinear amplification, a disturbance amplitude ∼ 4 times larger than used for isolated wave packet was
needed.
The nonlinear case result is totally different from the incompressible white noise evolution. Now, from a
position around x ∼ 0.6, longitudinal streaks are observed along the entire domain, that could be linked to
oblique transition. After initial transient travels out from the computational domain, Fourier analysis was
applied in spanwise direction and time. The spectrum evolution for linear and nonlinear case, is shown in
figure (6.7). The linear evolution is identical to an isolated packet, because linear regime is independent of
the phase, and the modes do not interact. In the nonlinear evolution, the linear band, is now very weak,
in contrast to the incompressible case. Low frequency modes are amplified strongly (figure 6.8). The lin-
ear and nonlinear bands can be identified separately by superposition of the spectrum levels (see figure 6.9).

A preliminary localized analysis was performed, by applying a Gaussian windowing in the time velocity
signal at a fixed point in space, as shown in figure 6.10(a). From the Fourier transform applied to the
windowed signal, low frequency modes have the highest amplitudes (figure 6.10(b)). Also, in this figure,
the format of a wave packet can be observed.
A very interesting aspect to note here, is that the wave packet interaction seems to reproduce better
aspects of the white noise transition, because in the nonlinear pair packet interaction, low frequency modes
were dominant. A more realistic model for natural transition could be constructed considering wave packet
interaction, justified by the previous observations.
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Figure 6.7: Evolution of a white noise perturbation at Mach 0.9.
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Figure 6.8: Most amplified modes in nonlinear amplification for white noise perturbation at Mach 0.9.
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Figure 6.9: Comparison of spectral levels at x=796.
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Figure 6.10: (a) Velocity time signal and Gaussian windowing (b) Fourier transform
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Chapter 7

Conclusions and remarks

7.1 Conclusions

A DNS code was developed, to investigate on transition in compressible subsonic boundary layers over a
flat plate. Code validation tests were performed, on linear and nonlinear stages of transition, on incom-
pressible and compressible regimes. The focus of the work is to investigate natural transition in subsonic
boundary layer, modeled by wave packets and perform a preliminary study of transition induced by white
noise. Three main problems were considered, numerical simulation of the experiment [59] on incompress-
ible boundary layer, the influence of compressibility on wave packet evolution at subsonic Mach numbers
and finally, a preliminary study of transition induced by white noise in a boundary layer at Mach 0.2 and 0.9.

Comparison between numerical and experimental results [59] are in very good agreement in the linear
and nonlinear stages, in both, spatial and Fourier spaces. A nonlinear modal analysis was performed in two
bands, subharmonic and fundamental. A numerical investigation of this experiment and a detailed analysis
of this kind is not found in the literature for wave packets in the incompressible boundary layer. In the
subharmonic band, nonlinear amplification was compared with the controlled case of H-type breakdown,
several variables, such as, phase velocity, streamwise wave number, of selected modes were calculated. The
growth rates, phase locking and threshold amplitude of the 2D wave of selected modes in the wave packet,
corresponds with this mechanism.
Sometimes, in literature the modes that could present subharmonic resonance are identified by their peaks
in the spectrum in a fixed position. This fact incorrectly suggest, the presence of detuned subharmonic
resonance. However, from the analysis performed in Chapter 4, it was concluded that the peaks of the
fundamental and subharmonic waves occur at different streamwise positions.

To investigate the origin of the subharmonic modes, they were removed from the perturbation spectrum.
The resulting wave packet from this disturbance, develops an almost identical subharmonic evolution as in
previous case, hence, subharmonic modes are generated by previous nonlinear interaction.
In the fundamental band two groups of modes were chosen, with the same spanwise wave number in a
range of frequencies. As reported by [16], both bands have strong nonlinear amplification. The effective
amplitude of the 2D mode in the case of controlled transition is of the order of the amplitude of the wave
packet. Also, phase locking process is observed between the primary and secondary waves, evidencing the
presence of K-type and H-type breakdown. Comparison of the amplification curves for modes with high
spanwise wave numbers in the experimental domain, shows good agreement in the growth rates, but the
intensity level is underestimated in the the DNS simulation. To attempt to determine the cause of this
discrepancy, in the DNS simulation two effective experimental conditions were included . The experimental
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pressure gradient and experimental asymmetry, last one, added by performing a calibration on each mode
of an experimental linear position, in the Fourier space.
Results of these simulations show no influence of these factors on the intensity levels of the modes in the
fundamental band. Finally the disturbance amplitude was increased by 20% to study amplitude effect on
the wave packet. In relation with the previous case, differences were found in the fundamental modes,
which have higher levels, similar to the observed experimentally, however subharmonic growth rates were
overestimated.
Influence of compressibility on the wave packet evolution was investigated in boundary layer at Mach 0.7
and Mach 0.9. In the linear regime, in both cases lower growth rates, than in the incompressible bound-
ary layer were observed. DNS simulations show that linear growth rates at Mach 0.9 are 10 times lower
than for Mach 0.2. The frequency of the most linearly unstable 2D mode, decays with Mach number. For
Mach ≤ 0.7 the most linear unstable mode is two-dimensional, at higher Mach numbers the oblique mode
are the most linearly unstable, as expected by the results reported in the literature.
At Mach 0.7, two disturbance amplitude were considered, at the highest amplitude, all the selected modes
in separated bands have nonlinear amplification. With the lower disturbance amplitude, only modes in
the subharmonic band have nonlinear growth. Results suggest that nonlinear mechanisms triggered in the
transition process, depends on the disturbance amplitude. The wave packet at Mach 0.9 shows a more
stable character, and only has nonlinear amplification in the subharmonic bands. No higher amplitude
could be considered because the resultant wave packet become nonlinear from the source.
To represent a possibly closer scenario to natural transition, interaction of a pair of wave packets were
considered at Mach 0.9. This value of Mach number was chosen to be typical of transport aircraft at cruise.
For the wave packet interaction, two pairs of wave packets were simulated, with different relative distance
between them in spanwise direction.
In contrast to the isolated wave packet case, both pair of packets have strong nonlinear amplification in
several bands. The stationary modes are nonlinearly amplified, which suggest the presence of oblique res-
onance. Closer packets have a strong nonlinear behavior than the more distant packets. In general, it was
found that packet interaction has a stronger nonlinear character than isolated wave packet.
In the cases considered, the interaction of the wave packets generates regions in the physical space of con-
structive superposition. This local interaction have a global impact in the spectrum evolution, changing
drastically the character of the nonlinear evolution in several bands in the spectrum, in relation to the
isolated wave packet.

Finally, the transition induced by a white noise disturbance, produced by phase randomization was studied.
In the linear regime the spectral evolution is identical to the linear wave packet, as expected, because the
phase has no influence in this regime. The nonlinear results for Mach 0.2 and Mach 0.9 are completely
different. In the incompressible boundary layer localized lambda vortex structures are observed, that could
be associated to the local presence of H-type and/or K-type resonance. In the compressible boundary layer,
from a position in downstream, longitudinal vortex are generated, which are distributed across the entire
domain. By comparison of the results at Mach 0.9, for isolated wave packet, the packet pair interaction and
the transition generated by white noise , the wave packet interaction seems to be a better representation
of white noise transition, because has an destabilizing effect and develops longitudinal vortex, as occurs for
the the transition induced by white noise. However, a localized analysis is needed to investigate in detail
this kind of transition. As a general conclusion in the white noise transition, compressibility has a stronger
effect that in the wave packet evolution.
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Suggested work

In the wave packet evolution there are several parameters that deserve a systematic investigation, to
identify separately their role in the transition process. From the results of the present work, some factors
seem to be interesting, such as the disturbance amplitude and disturbance spectra. It is known that the wall
temperature has an important influence on the stability of the compressible boundary layer. At subsonic
Mach numbers there are no works of wave packets for this regime. In Chapter 6, preliminary results for
transition induced by white noise were presented, a deeper investigation can be done for this problem,
considering several random perturbations and applying local analysis techniques. Also, the impact of low
level white noise disturbance on the wave packet evolution may help to link features of nonlinear stages
observed in wave packet with natural transition.
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pages 182–208. Mitt. Nachr. Ges. Wiss. Göttingen, 1933.

[76] Herrmann Schlichting and Klaus Gersten. Boundary-layer theory. Springer Science & Business
Media, 2003.

[77] P. J. Schmid, S. C. Reddy, and D. S. Henningson. Transition Thresholds in Boundary Layer and
Channel Flows, pages 381–384. Springer Netherlands, Dordrecht, 1996.

[78] Peter J. Schmid and Dan S. Henningson. Stability and transition in shear flows. Springer-Verlag,
2001.

109

DISTRIBUTION A. Approved for public release: distribution unlimited.



[79] P.J. Schmid and D. S. Henningson. A new mechanism for rapid transition involving a pair of oblique
waves. Phys. Fluids A, 9:1986–1989, 1992.

[80] G. B. Schubauer and H. K. Skramstad. Laminar boundary layer oscillations and transition on a flat
plate. Technical report, NACA Rep.909, April 1943.

[81] N. V. Semionov, A. D. Kosinov, and A. A. Maslov. Transition Control of Supersonic Boundary Layer
on Flat Plate, pages 323–328. Springer Netherlands, Dordrecht, 1999.

[82] T.K. Sengupta, A. Dipankar, and A. Kameswara Rao. A new compact scheme for parallel computing
using domain decomposition. Journal of Computational Physics, 220(2):654 – 677, 2007.

[83] Michael Severin. Direct numerical simulations of three-dimensional wavepackets in a flat-plate
boundary-layer. Master’s thesis, University of Arizona, 2012.

[84] F. N. Shaikh. Investigation of transition to turbulence using white noise excitation and local analysis
techniques. J. Fluid Mech., 348:29–83, 1997.

[85] B. SINGER, J. FERZIGER, and H. REED. Investigation of the effects of initial disturbances on
plane channel transition. Aerospace Sciences Meetings. American Institute of Aeronautics and As-
tronautics, January 1986. doi:10.2514/6.1986-433.

[86] Jayahar Sivasubramanian and Hermann F. Fasel. Numerical investigation of the development of three-
dimensional wavepackets in a sharp cone boundary layer at mach 6. Journal of Fluid Mechanics,
756:600–649, 10 2014.

[87] Jayahar Sivasubramanian and Hermann F. Fasel. Direct numerical simulation of transition in a sharp
cone boundary layer at mach 6: fundamental breakdown. Journal of Fluid Mechanics, 768:175–218,
4 2015.

[88] P. R. Spalart and Kyung-Soo Yang. Numerical study of ribbon-induced transition in Blasius flow.
J. Fluid Mech., 178:345–365, 1987.

[89] J.J Thibert and D Arnal. A review of {ONERA} aerodynamic research in support of a future
supersonic transport aircraft. Progress in Aerospace Sciences, 36(8):581 – 627, 2000.

[90] A. Thumm, W. Wolz, and H. Fasel. Laminar-Turbulent Transition: IUTAM Symposium
Toulouse/France September 11–15, 1989, chapter Numerical Simulation of Spatially Growing Three-
Dimensional Disturbance Waves in Compressible Boundary Layers, pages 303–308. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1990.

[91] W. Tollmien. über die Entstehung der Turbulenz. In Math. Phys. Klasse, pages 21–44. Mitt. Nachr.
Ges. Wiss. Göttingen, 1929.

[92] ANATOLI TUMIN. Three-dimensional spatial normal modes in compressible boundary layers. Jour-
nal of Fluid Mechanics, 586:295–322, 9 2007.

[93] Adam P. Tunney, James P. Denier, Trent W. Mattner, and John E. Cater. A new inviscid mode of
instability in compressible boundary-layer flows. Journal of Fluid Mechanics, 785:301–323, 12 2015.

[94] J. van Ingen. The eN Method for Transition Prediction. Historical Review of Work at TU Delft.
Fluid Dynamics and Co-located Conferences. American Institute of Aeronautics and Astronautics,
June 2008. doi:10.2514/6.2008-3830.

110

DISTRIBUTION A. Approved for public release: distribution unlimited.



[95] B. R. Vasudeva. Boundary-layer instability experiment with localized disturbance. Journal of Fluid
Mechanics, 29:745–763, 9 1967.

[96] Miguel R Visbal and Datta V Gaitonde. On the use of higher-order finite-difference schemes on
curvilinear and deforming meshes. Journal of Computational Physics, 181(1):155 – 185, 2002.

[97] B. Wasistho, B.J. Geurts, and J.G.M. Kuerten. Simulation techniques for spatially evolving insta-
bilities in compressible flow over a flat plate. Computers and Fluids, 26(7):713 – 739, 1997.

[98] Frankl White. Vicous Fluid Flow. McGraw-Hill, 1974.

[99] X. Wu, P. A. Stewart, and S. J. Cowley. On the catalytic role of the phase locked interaction of
tollmien schlichting waves in boundary-layer transition. J. Fluid Mech., 590:265 –294, 2007.

[100] Xuesong Wu and Philip A Stewart. Interaction of phase-locked modes: a new mechanism for the
rapid growth of three-dimensional disturbances. Journal of Fluid Mechanics, 316:335–372, 1996.

[101] Kyung-Soo Yang, Philippe R. Spalart, and Joel H. Ferziger. Numerical studies of natural transition
in a decelerating boundary layer. Journal of Fluid Mechanics, 240:433–468, 7 1992.

[102] K. S. Yeo, X. Zhao, Z. Y. Wang, and K. C. Ng. DNS of wavepacket evolution in a Blasius boundary
layer. J. Fluid Mech., 652:333–372, 2010.

[103] Lian Yongsheng and Shyy We. Laminar - Turbulent Transition of a Low Reynolds Number Rigid or
Flexible Airfoil. AIAA Journal, 45(7):1501–1513, 2007. doi: 10.2514/1.25812.

111

DISTRIBUTION A. Approved for public release: distribution unlimited.




